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SECTIOR I
INTRODUCTION

The progress and results achieved on this basic research program are
sumsrized herein. The purpose of the research program is to study the
application of near-field techniques to charscterize the radiation and
coupling characteristics of wideband CW or pulsed radistors. Out-of-band
as well as in-band situations are of intereat and both situstions are
included in the study.

Tne radiation pattern of an antenna can, in principle, bte calculated
by conventional deterministic analysis based on a knowledge of all system
variables. The feed network, however, can support multi-mode energy
propagation at out-of~band frequencies. For example, energy can be
propagated in the 18 different modes delineated in PFigure i-1 in
standard WR-284 S-band waveguide at the out-of-band fiequency of 10-0
GHz. Furthermore, all of thz2 modes whose second index is non-zero have
an electric field component polarized orthogonal to the dominant in-
band TEjp mode. The electric fields for the first 5 modes are depicted
schematically in Figure 1-2.

Calculation of the relative phases and amplitudes of the different
modes requires a detailed knowledge of the feed network. This is
generally a very difficult boundary value problenm. Further, the
coefficients of the modes will be quite sensitive to minor electrical
and mechanical wvariations in the feed network, especially those
containing active devices, sc¢ that nominally identical systems can
produce distinctly differen: out-of-band patterns. This characteristic
out-of-band pattern sensicivity is evident from experimental and
theoretical studies [I-7]. In order to account for these seemingly
random effects, the cut-of-band mode exrcitation coefficients may be
treated as randca variebles. Treatment of these modal coefficients as
randoo variables serves a dusl purpose. Firat, it allows the analysis
of radiation patterns to proceed iadependent of the faed structure
(wliich may vary between otherwise identical anteanas). Second, it

leads to statistical equations that can aczount for varistions in

fabrication and excitation of the nominal antenna.

3
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Figure 1-1. MDagram depicting the allowed highe* order modes versus
frequency for WR- 284 S-band rectangular waveguide.

2




vy

F

(0} TE4, MODE (b) TEpo MODE

(c) TEq MODE (d) TE, MODE

NS S

N ,
N, oo L

(e) TM™M; MODE

4

Figure 1-2.

Sketches depicting the transverse electric field= for the
indicated higher-order modes in rectangular waveguide.
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Consequently, statistical analysis techniques are needed for out~
of-band characterization since it is impractical, or perhaps
impossible, to solve the electromagnetic boundary value problems for
the myriad reflector and phased array feed systems encountered in
practice. Statistiral techniques and concepts can also be employed to
erovide succinct EMC descriptions of essentially “determimistic" im-
tand wideband or pulsed radiators. Consequently, a conaiderable effort
hat been devoted to statistical characterization of wideband radiators.

The research program is divided iato four major tasks. The four
tasks are as follows.

Task 1. Provide a near-field wethodology to characterize
electromagnetic emitter radiation patterns at in-band and out-of-band
frequencies fer wide bandwidth radiators. The objective cf this task
is to develop the appropriate theoty and equations based on statistical
anglysis techniques for efficient charactevization of wideband
radiators.

The objective of Task | was achieved via che following

accomplishments:

(a) The theory and equations were developed for bath
in-band and out-of-dand ‘requencies for deriving
staristical average far-Sicld patteras from wide-band
or pulsed near-fiell measurements,

(b) Based upon the theoretical studies, methods of efficiently
charactesizing both wideband continuous-wave and pulsed
radiators using near~fisld peasurement techniques were
devised,

(c¢) Based upon the theoretical studies, 2 mumerical simulation
which is applicable to various antenna types, such as
reflector and phased-array antenncs was performed to
dewonstrate that valid statistical favr-field patterm
distributions can be cbtained from near-field measiurements.

Task 2. Theoretically relate the radiation pattern

characterization to the basic data needed for efficient optimization
analysis of electromagnetic spectrum usage. The objective of this task
is to relate the near-field derived wideband antenna charscterization

to antenna coupling of antenna systems which co-exist in the same EM
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enviionment. This objective was achieved by the following
accomplishments:

(a) The theory and equations were developed for analvring
the coupling between co-sited transmittiog and
receiving systems for combinstions of wideband
transmitting antennas, narrowband-harmonic transmitting
antennas, anl both wideband and narrowbard-harmonic
receiving antennsas,

(b) Based upon the theoretical studies, the nesr—-field
derived data required for cfficient EM spectrum usage
optimization were defined and employed in
numerical gsimulations to demonstrate application to
EM spectrum usage analysis.
Task 3. Provide the methodology to assess the effects of system
devices (i.e., higher-order mode generation) on the radistion pattern.
The objectives of this task are (1) to determine & method whereby
the pattern effects of higher-order wodes which are generated by system
devices at out-of-band freguencies can be assessed and (2) to study the
feasibility of identifying the modal content of arn out-of-bard feed
systeama from measured d.ta. These objectives were achieved by the
following accomplishments.

(a) Egquations vere derived during Task 1 and Task 2
to permit the out-of-band radiation pattern
statisticc to be computed from a knowiedge of
the systex device statistics which describe the
higher-order mode generation and propagation.

(b) Theory and equations for identifying the higher-order

mole statistics of system devices through
utilizstion of wideband or pulsed near-fieid
measurements were derived.

Because the first objective for this task was esseatially achieved
as a reault of tke work on Tasks 1 end 2, the scope of the effort on
this task was expanded to include a brief analytical study of the out-
of-band characteristics ¢f three common waveguide components. The
three waveguide devices studied are (1) a coax-to-waveguide adapter,

(2) radial bends, and (3) a ferrite phase shifter.

i
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Task 4. Investigate the impact of site effecis on the near-field
antenna analysis technology.

The objective of this task is to extend the existing wunochromatic
spectrum scattering matrix analysis to study antenna siting efrects on
the wideband and out-of-band performance of radiating systems. This

objective was achieved by the following accomplishments.

(a) A theoretical study was performed to investigat:s
techniques and derive the equations for extending
the existing monochromatic spectrum scattering
mat~ix theory to analyze site effects over
widz frequency bandwidths,

(b) Based upon the results of the theoretical study,
a numerical simulation of the site effects on the
wideband in-band and out-of-band performance
of a radiating system was performed.

All of the objectives set forth in the task statements were
successfully achieved. The salient results of the research work for
each task are successively presented and discussed in Sectioms II
*qrough V. Most of the important results for Task I were previously
presented in the Interim Technical Reports No. 1 and No., 2| 4,5])
Similarly, the main results for Task 2 «sre included in Interim
Technical Report No. 2, Abbreviated versions of the previously
reported results for Tasks 1 and 2 are contained in Section II and
Section 111, respectively, along with discussions of new or additional
results, Resylts for Tasks 3 and 4 are contained in Sections IV and V,

respectively, Conclusions and recommendations based on the entire

research program are presented in Section VI,




SECTION II

THEORY AND TECHNIQUES FOR WIDEBAND
ANTENNA PATTERN CHARACTERIZATICH

A. Introduction

The

theory and equations were developed for characterizing the

radiation patterns of wideband cw or pulsed antennas over both in-band

and out-of-band frequency intervals from measured data collected via

. near-fieid measurement techniques. The results are applicable to

either phased array or reflector antennas. Numerical simulations were

performed for (1) a 20-element out-of-band waveguide phaszd array with

no inter-element coupling and (2) 3-element and 9-element wire arrays

with inter-element coupling., The effect of statistical correlations of

the near-field data was studied and methods for handling correlation

effects

density

were derived. Useful approximations for the probability

function for the radiated power pattern statistics for

correlated sources were also identified.

The key results obtained via the Task 1 efforts may be summarized

as follows:

(1)

(2)

(3)

The statistical average patterns and standard deviations at
selected frequencies can provide a very succinct engineering
description of the important EMC characteristics of wideband
CW multimoding antennas. The statistical average patterns
and standard deviations are a practical alternative to the
comparatively more expensive and cumbersome Monte Carlo
simulations.

The statistical average pattern for a given frequency may
be computed from a knowledge of the following near-field
statistical parameters:

(a) statistical average value of the electric field at all
near-field measurement points,

(b) the standard deviation of the electric field at all
measurement points, and

(c) the covariance functions for the electric fields at
all different near-field measurement points.

The statistical average pattern versus time for a pulsed
system depends on all of the above near-field statistical
parameters listed in Item 2, and the following far-field
statistical parameters:
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(a) the statistical average value of the far-field
electric field at all frequencies in the frequency
band,

{(b) the standard deviation of the far-field electric
field at all frequencies in the frequency band, and

(c) the covariance functions of the electric field at
all different frequencies in the frequency band.

However, the far-field statistical parameters listed above
can be computed from the near-field statistical parameters.
Thus, pulsed antennas characterization does not require
knowledge of any additional statistical near-field data.

(4) The probability density function (p.d.f.) for the far-field
electric fields of correlated random sources or scatterers
can be accurately approximated for most antenna or scattering
problems via the use of Nakagami's p.d.f. and linear operator
theory. A less accdurate but relatively simple expression
for the p.d.f. was also derived that is cuitable for certain
engineering applications.

These results imply that the fundamental technical requirement for
employing near-field techniques to describe wideband CW oc pulsed
antenna radiatior is that one be able to compute the statistical
average far-field power pattern versus frequency from the measured
near-field data. As stated ir Item 2, this requires a knowledge of the
average electric field and the standard deviation at each sample point
and the covariance fuaction at all different measurement points (cross-
covariance). Only the cross-covariance function presents a significant
measurement problem. The accurscy and feasibility of the near-field
measurement technique for wideband out-of-band antennas depends on
whether the covariance functions can be suitably determined.
Accordingly, considerable effort was devoted to studying the covariance
functions and their effect on accuracy, time ana cost. The results of
this effort are presented and discussed 1in subsection C. In
particular, the theoretical and numerical analyses are presented for a
linear array of wire elements. The theory and equations for a two
dimensional array of wire elements involve no new concepts.
Corresponding theoretical and numerical analyses of an array of

multimoding out-of-band waveguide elements can also be performed by

including intermodal correlations in the analysis.
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B. Frequency Domain Analysis

The analysis was conducted initially for the linear array of
waveguide elements depicted in Figure 2-1. The array is assumed to be
either pulsed or operated over a finite' frequency band. The frequency
spectrum ig assumed to conéain some components which can be propugated
in higher-crder mode field configurations in the waveguide elements. A
convenient starting point in the analysis is to first write down the
appropriate equaticns for a non-random antenna measurement situation.
The analysis of randomly-excited antennas can then subsequently be
conducted based on the initially deterministic equations and
statistical analysis techniques.

1. Basic Equatious

The electric field produced on the near-field measurement
plane is written as the superposition of the radiation fields of the
individual element radiators. It is assumed that the measurement plane
is Jocated at a distance x that is > the far-field distance of each
eiement radiator. A transverse field component, say the vertically

polarized component Eq(w), produced at the measurement point q is then

ox [ w ]
P o Tag (2-1)
r Hd
2q

K K
Eq(w) = E X a, (w)hz(w,¢2q)
where ¢ is the speed of light in vacuum, w = 2nf, and where

a" = complex mode coefficient for the «th mode in the
sth element,

h, = vertically polarized far-field electric
field pattern of the kth mode of the
Lth element,

7 angular location of the q'N measurement point

1 with respect to the center of the Lth element,
r, = magnitude of the radius vector from the center
1 of the 2th element to the D measurement
point.

The plots of amplitude and phase shown near the bottom of Figure 1
depict either (1) the electrie field versus frequency as the array
input signal 1s swept over a specified frequency band or (2) the
complex frequency 8pectrum of a radiated pulse. In either case,

different rcsults would be obtained at different measurement points.

9
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Figure 2-1, Sketch depicting a linear array of waveguide elements and
4 hypothetical out-of-band amplitude and phase responses
at a near-field measurement point.
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The frequency spectrum of the time pulse is obtained via the Fourier

transform of the pulse, which is
Eq (w) = L Eq(tn) exp [—jutn] , (2-2)
where Eq(ty) is the time-domain response.
The far-field electric field is obtained as the discrete Fourier

transform of the near-field electric field. Thus, the far-field

electric field is given as
. W .
E(w, ¢) = ZqEq(w) exp [-_] - sin(¢ )Yq] ’ (2-3)

where Ygq is the y-coordinate of the qth measurement point,¢ is the

azimuth angle of the far-field observation point, and where Eq is a

previously defined by Equation (2-1). A factor (1/r), where r is the

distance from the center of the measurement plane to the far-field
observation point, has been suppressed in Equation (2-3) and subsequent
equations,

The power density in the far-field of the antenna is obtained by
multiplying Equation (2-3) by its complex conjugate. The resulting

equation for the power density P(w,¢) is thence

P(w,9) = E¥(uw,$)E(w,¢) =
5’ (2-4)
aniq E*q'(w)éA(w) exp [j % sin(¢) (qu—Yq)

Equations (2~1) through (2-4) are the well-known basic equations
for analyzing deterministic (non-random) antenna patterns utilizing the
frequency domain approach, The temporal (time) behavior of the
electric field is obtained via the Fourier transform with respect to
frequency. The corresponding analysis of a randomly-excited array
antenna primarily involves the application of certain mathematical
operations to these same equations, as described in the following
paragraphs.

The plots shown in Figure 2-1 can be interpreted as representing

the measured response obtained Xrom one experiment involving a

11
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randomly-excited artenna. Suceessive experiments would yield different
responses. Consequently, a randomly excited auntenna has many poasible
near-field distributions, spectral responses, and far-field patteras.
Thus the amount of data required to characterize a randomly excited
antenna will be wuch greater than the amount of data required for a
comparable Jeterministic antenna unless a suitable statistical analysis
can be devised to reduce the data requirements.

The statistical average value of the far-field power density is

written as

<Plw, ¢)> =

E L <Eq (@) Eglay o> exp [ 2 sinG) (Xq'-¥g)],

(2-5)

where the angular brackets denote the statistical average value [ 8].

The angular brackets are shorthand notation for integrals of the type

LW OOD> = /'f [0l e o) ee s e ¢ e, (27O
8=t '
where X * a non-random variable,
¢ = random variables, and
f(r) = probability density for the random variables.

Similarly, the statistical average value of the (complex) electric

field is

E(w,$) = 2q1<:8q(m):> exp [-j g- sin (¢) Yq] . (2-7)

The electric field is, of couarse, & complex valued function and is

therefore not an observable quantity, However, the statistical average

12




value and higher-order statistical moments are well defined quantities
(51 In particular, the statistical average value of the complex

electric field Eq is defined as

<Eqw)> = Uglw)> - j <vgw)> . (2-8)

where Uy and Vg denote the real and imaginary parts, respectively, of

Eq. Uq and Vq are defined in the conventional manner as

Uq(w) = Agq(w) cos [aq(m)] , and (2-9)
Vq(w) = Aq(w) sin [aq(w)] ’ (2-10)
where Aq(w) = relative amplitude (real number) of the electric

field at q, and

@q(w) = relative phase of the electric field at q.

Thus, a knowledge of the average values of the real and imaginary parts
of the near-field electri; field over the measurement plane permits the
computation of the average far-field electric field as the Fourier
transform of the average near-field electric field.

The average power density is related to the product <E¥> <E> ’

where the symbol * denotes complex conjugation, as
<P(wyo)> = <B¥ (0, 9> <E(w,$)> + Cpx,g(w,9) . (2-11)
the symbol Cgx g denotes the covariance function and is defined as
Cen,g(9) = <E*(w,$)E(0,$)> - <E¥(w,¢)> <E(w,$>(2-12)

The equation for the far-field covariance function can be derived for

the linear array via straightforward algebraic manipulations. The

13

| g LA O T MR LIRS



K. B R o,

resulting equation is

Cgw £l ) = T Y2 (0,0) +
L, vy ,(a)y (R , (w)exp {j 2 sin(w) (Y _,~Y)
a'"g Tq' T e'q Pe LR I
{9#q)
(2-13)

where Y4 denotes the standerd deviation of the near-field electric
field at q and Rq'q denctes the cross—correlation coefficieant for the
electric field at q and the conjugate of the electric field at q'.

The standard deviatiom Yq is a real number and is equal to the
square root of the sum of the variances of the real and imaginary parts

of Eq. Accordingly, Yq is uritten as

2 2
Yq(w) J Lo, (w)] . [o (w) ] q (2-14)
vhere [04(w)]q = standard deviation of the real part of Eg, and

{ay(wy], = standard deviation of the imaginary part of Eq.

The cross-correlation coefficients Rq'q are defined as the complex

numters obtained via the equation

C , (w)
R, (w)=

q'q Y;.(w)yq(m) ’ (2-15)

where the numerator of Equation (2~15) is referred to as the cross-

covariance function. The cross-covariance of the electric fields at g

and q' is -




r ' ]
<0+ U WD <, W<, >

(2-16)

(@]
el
=)
~
£
A
il
Ve N

+ <vq.(w>vq(w)> <vq.(w)><lq(w)>}

J

[ 1
+j { <Vq' (w)Uq(m)> <vq' (“’Mq(w)>

- {<Uq' (w)Vq(m)> @q' (m><\’q(w)>‘ §

The rigorous analysis of the far-field statistical average power
pattern for a given frequency is seen from Equation (2-7) through (2-
16) to require computation of the following near-field statistical

quantities:

(1) statistical average value of the real and imaginary parts
of the near-field jelectric field at all measurement points,

(2) the standard deviation of the real and imaginary parts of
the near-field electric field at all measurement points, and

(3) the cross-polarization coefficients of the near-field
electric field at all different measurement points.

In a near-field measurement situation, the first two quantities can be
determined by computing the "sample" average values and standard
deviations obtained from repeated trials, The sample average value [8 ]

of a random variable W is defined as

nn

<> = ;. LW . (2-17)

where W, is the value of W obtained in the nth trial, and N is the
number of trials. Similarly, the sample standard deviation gy is

defined as
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oy ,J N En [Wn - <W>) (2-18)

The extraction of the cruss correlation data is not straightforward and
this oroblem area is discussed in Part C.

2. Frequency-Averaged Statistical Average Antenna Patterns

The preceding discussions have addressed statistical
averaging over randomly-varying variables. It muy be meaningful to
alse a4verage over frequency in some applications involving a CW
radiating system of moderate bandwidth. The purpose of averaging over
frequency is to obtain a single average pattern plus standard deviation
that adequately describes the general radiation characteristics of the
antenna. The aingle average pattzrn plus standard deviation replaces
the large collection of patterns versus frequency that would otherwise
be needed to characterize the antenna.

Two different methods for obtaining the frequency-averaged
statistical pattern have been formulated. The most direct method for
nbtaining the frequency-averaged statistical average pattern is to
first compuce the statistical average pattern at selected frequencies
and then arithmetically average the statistical average patterns. This

process is described mathematically as
1
<€Plu, ) = § I, Plu_,9) (2-19)

where N is the total number of selected frequencies and where frequency
averaging is denoted by subscript w on the outerwost right-hand
angular bracket. It is also possible to obtain the frequency-averaged
statistical average pattern by first computing the deterministic
frequency average and then computing the statistical average. This

process is described mathematicslly as

w =%, L p{-3d . (2-20)
€rw, 03> R Ly K0y > expl-id  ul

1€
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where

a, =280 v _yy ana (2-21)
q'q c q q

1
<Dq'q> = 5 Eq,Eqﬁtq,(un,Q)Bq(wn)}exp[jdq,qmn] . (2-22)

The amount of computational labor required to compute frequency-
average statistical average patterns is roughly equivalent for the two
methods.

The out-of-band radiation patterms of a 20-element multimoding
array were studied numerically via both direct Monte Carlo simulations
and Equations (2-1) through (2-19). For this array, whose in-band
design frequency is 9.0 GHz, Monte Carlo patterns as well as the
statistical average patterns and standard deviations were computed for
selected fregquencies up to 19 GHz for various in-band scan conditions.
Experimentally-derived out-of-band phase shift and attenuation
statistical parameters for a waveguide element containing a ferrite
phase shifter were used as inputs. Accordingly, the modal phasge
variations follow & Gaussian digtribution and the wodal pover
variations follow a unifcrm distribution to good approximation.

It was found that for small in-band scan angles the statistical
average pattern and standayd deviation at frequencies of 14 GRz, 15.7
GHz, and 18 GHz could provide a good EMC description of the radiation
characteristics over portions of the frequency band for which energy
can propagate in the first two wodes, the first three modes, and the
first five wodes, respectively,. Figure 2-2 shows the calculated
average pattern and standard deviation at 18 GBz for broadside scan
superimposed on calculated Monte Carlo patterns for 16~19 GHz region
for the cross polarized component of the radiated powe:r for propagation

in the first 5 waveguide modes. For in-band scan angles of about 30

degrees or more, a better EMC description is obtained by including at
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least the statistical average patterns for frequencies near the edges
of the frequency sub-interval because the patterns at different out—of-
band frequencies scan through uiuequal amounts for a given in-band scan
angle [ 9]. The spatial regions corresp&nding to the superimposed main
beams and grating lobes clearly delineate areas of particular concern
in EMC applications.

The statistical average patterns and standard deviations at
selected frequencies can provide a very succinct engineering
description of the important EMC characteristics of wideband CW
multimoding antennas. The statistical average patterns and standard
deviations are a practial alternative to the comparatively more

expensive and cumbersome Monte Carlo simulations.

3. Reduction of Data Measurement Requirements

A reduction in the nesr-field data measurement requirements
can be achieved at the expense of a nominal reduction in the accuracy
of the far~field pattern detéils. Specifically, reducing the amount of
measured data either by increasing sample spacing or by truncating the
size of the transverse measurement plane will generally cause errors in
the calculated far—-field patterns, The magnitude of the far-field
pattern errors is a function of the sample spacing, the relative power
level at the edges of the truncated near-field measurement plane, and
the accuracy of the measured amplitude and phase recorded at each
sample point [10]. The effects of number of sample points and phase
measurement accuracy on the calculated far-field power pattern levels
is displayed in Figure 2-3. The effect of the number of sample points
on the beam pointing error are displayed in Figure 2-4 for a specified
phase measurement error. It was assumed that the relative power at the
edges of the measurement plane is -25 dB with respect to the highest
recorded near-field amplitude. The analysis and equations employed to
obtain these results are summarized in Reference [10].

Figure 2-3 is a plot of the error in the calculated far-field
power pattern versus the "no-error' power pattern level for an R.M.S.
have measurement error of 5.0 degree for sample spacings of 1A and 23,

where A is the operating wavelength. The '"no-error" power pattern
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Figure 2-3.
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ERROR-FREE POWER LEVEL (dB)

Error in the relative power level versus the nominal
error-free power level for the indicated near-field
measurement sample spacings for a 5.0 degree RMS
phase measurement error.
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Figure 2-4. RMS beam pointing error as a function of RMS
phase error for an antenna whose 3-dB beamwidth
is nominally 0.5 degrees for the indicated sample
spacings.
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level along the abscissa is the power pattern level calculated from A/2
spacing for a near-field measurement plane which extends to the -40 dB
level. Figure 2-4 is a plot of pointing error versus R.M.S. phase
measurement error for sample spacings of A/2, 1A , and 2) .

Clearly, the accuracy of the calculated power pattern is degraded
by large sample spacings, truncated measurement planes, and near-field
measurement errors, It 1is also true that smaller near-field
measurement errors permit the use of larger sample spacings and/or more
severely truncated measurement planes. Of course, the advantages of
reduced data recording requiremente must be weighed against the
accuracy requirements for the antenna under test. However, it appears
that substantial reductions can be achieved for many engineering
applications where the main interest is in obtaining valid estimates of
mainbeam and grating lobe power 1levels and pointing directions and
where moderate over-estimates of the average sidelobe level are

acceptable.

C. Near-Field Covariance Study

The fact that the electric fields at different near-field sample
points are correlated has an effect on the measurement time, accuracy
and cost which can be appreciated by considering two different
measurements using a single probe to measure a wideband phased array
antenna, The two measurement;schemes will be denoted for convenience

as Method I and Method II.

In Method 1, data are recorded as the probe is moved over the
measurement plane in a raster scan. The operating frequency and array
scan condition are assumed to be constant while the probe scans the
entire measurement plane. This takes about two hours of elapsed time.
The probe is then returned to its starting point, and the array phase
shifters are "cycled” and returned to the initial scan condition. Data
are recorded at the same frequency as the probe again traverses the
measurement plane. This sequence of events is repeated, say, 50 times
for a given frequency and array scan condition. The total measurement
time required to record data for 100 frequencies s&nd 30 array scan
conditions is about 300,000 hours. The measurement time is clearly

excessive, Additionallv, it is very unlikely that an out-of-band array
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antenna under test can be kept stable, i.e., no variation in modal
content in any element, for the two-hours needed to record data for
each selected out-of-band frequency and array scan condition. However,
if the array element signals could be kept stable the near-field
covariance functions could be computed directly from the measured data.

In Method II, the probe is held stationary at a preseleéted sample
point while the signal source is scunned through the entire frequency
spectrum of interest for a given array scan condition. The phase
shifters are then cycled and returned to the selected scan conditior.
This procedure is repeated 50 times. A rew scan condition is selected
and the foregoing sequence of events is repeat:d. Finally, the entire
sequence of events is repeated for all of the preselected sample
measurement points on the near-field plane. Total measurement time for
100 frequencies and 30 array scan conditions is estimated to be about
120 hours. This measurement time 18 veasonable for a thorough
characterization of a randsmly-cxcited, out-of-band, wide-tand phased
array antenna. The average value and standard deviation of the
electric field at each near—-field sample point can be computed directly
from the recorded data for each frequency and scan condition. However,
the covariance function for the electric fields at different near-fieid
sample points is more difficult to extract from the recovded data.

The covariance functions for the near-field electric field of a
given array ce:» be computed in a straightforward manner in terms of the
covariance function for the electric fields on the array aperture. Of
course, the aperture covariance function is not known in practice. If
it were known, there would be no need for near-field measurements.
However, an analysis of a specified array antenna can be used to study
the general naturc of the near-field covariance functions and their
impact on the accuracy of the far-field average power pa%tern
calculations. Furthermore, near~field covariance functions computea in
this manner provide baseline data that can be used to check the
validity and accuracy of near-field covariance functions obtained from
analysis of simulated measured data obtained from a simulated Method II

measurement. Accordingly, the near-fieid covariance functions for a
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linear array of wire dipcles have been studied analytically and
numerically, A corresponding study fof an array of multimoding
waveguide elements would be beneficial but is beyond the scope of the
current efforts.

1. Analysis of Wire Array

The 1linear array of vertically-oriented, center—-fed wire
elements shown in Figure 2-5 is analyzed in the following paragraphs.
It 'is assumed in the analysis that each element is fed by a constant
voltage source.

The electric field Eq at measurement point q on the line defined

by Z=0, X=X, is Z~directed and may be written as

exp[—jk()(i + (YL- YQ)Z]

E =¢C X 2, 1 v (2-23)
Jx + (Y —YQ)2

complex current at the current amplitude waximum
on the 2th element,

L
[

Y, = the Y coordinate of the qth measurement sample point,

Y, = fthe Y coordinate of the L th element,
k. = 2n/)2 where A is the wavelength, and
j +h
CO = J—E’.‘l‘_ /2 ;( Jk 2’ dz -
4'" h/2

The integral appearing in the definition of C, is the same for each
element at a given frequency and is just the Fourier Transform of the
current distribution §'(z') along the length of the element, where
{(z') is normalized to have a maximum amplitude of 1.0. C, will be
suppressed in most of the remaining equations.

The statistical average far-fiecld power density P(¢) at

azimuth angle ¢ can be computed as previously stated, to wic:
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Figure 2-5. Sketch of an array of center-fed wire elemente and
near~-field sample points.
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P> = B> B> + Ig,l, Cq'q exp [ (jk sin ¢) (Yq' -¥g)]
(2-24)

vhere <E(#)> is the Fourier Transform of the average near-field
electric field, <E*(#)> is its cowplex conjugste, and Cq'q is the

near-field covariance function defined as

Cqrq = <Ey' Eq> - <EgD> <ED> (2-25)

where the symbol * denotes complex conjugation.
The near-field covariance function Cq'q obtasined fros Equations

(2-23) and (2-25) is then explicitly computed as

[ = = * .
Ca'q ™ Zgefp  CprgfeigiCig (2-26)

where

c erg ™ the covarance function for the current on

element L and the conjugate of the current

on element L', snd

. 2 b] _ 2
(;* . - exp{;ko [R + (Yi' - Yl') - {xo + (Y1 YL) ”

1'q' g )
J;’ + 0, -y, 0t e - x)? (2-27)
o q A o q i
The current covariance fuaction C 2 is by definition
Cog <t 1,> <S> <LL> . (2-28)

Equacions (2-26) and (2-28) express the fact that the near-field

covarianc2 function can be computed from the current covariance

function.
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The current covariance function C,ey is a function of the muytual
wimittdnee matele fuor the seray and the statistical psramsters of the
input voltage sources. In particular, the current at the Lth element

is computed as

- T ~-29
L, KI'!LKV'< (2-29)

where

sz = elements of the complex admittance matrix [)1], and

V.c = complex voitage of the kth voltage source.

It follows then that Corg is computed as

'8 ZK'XKrl'K'rﬂK CK'K (2-3¢)

where C . is the voltage covariance function.

The <zurrent covariance function has zero magnitude 1in two
different special cases. First, the current covariance function is
zero when all of the voltage covariance functions are zero. This
occurs when the voltages are deterministic (non-random). The currents
are then perfectly correlated with correlation coefficient Rz,z = 1.0

as can be diSferned from the equation

)

L'L
R, = = . (2-31)
e ezel

I e

where £, = standard deviation of the complex current, by taking the
limit as the numerator and denominator approach eero. Second, the
cucrrent covariance function for 2 ¥ &' is tzero when, simultaneously,
the voltages are uncorrelated and the mutual coupling between current
elements is zero. In this case the voltage covariance cx'n <'x
(Yf,).c and T, = GZKPL ’ i?e., the voltage covariance matrix and the
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mutal admitcance matrix both contain nor-zerc matrix elesents only

= e

along the diagomal. This second case, where C!.'!. = 0 forp * ¢,
i corresponds to the situation where the currents on different elements
4
. are uncorrelated and hence C , = 5’;,152 .

It will be assumed in the rest of the analysis that the voltage
sources are statistically independent and are therefore uncorrelated.
The behavior of the near-field covariance function will be examined for
the case invclving isolated current elements (I‘k = GQKI‘L) and the case
involving mutual coupling among the current elements.

The near-field covariance function may be written as

*
C = ¥ T 2 2

*

* 2
+ L., T .T - o
iy (vv)x r-45,4 ) Gz'q"’zq (23 }

L'k Rk L' 2

(e'#2)

for the reslistic situation when the curreate are coupled and as

2 (42 * -
Corq = Z,0T,,1%2 (¥, Gyq'C2q (2-33)
when the elewment currents are not coupled. Equation (2-33) is obtained

b from Equation (2-32) by setting I‘:'Kr‘ so that the off-

x B Gl'ncc!.:
diagonal elements of the mutua' +dwmittance matrix are zero. Equation
(2- 33) shows that the near-fie covariance function is non-zero even
if the near-field eleetric field i1s produced by isolated, statistically
i independent currents. This covariance will be denoted for comvanience
E as intrinsic covariance. It is always present in stochastic antenna
: probiems. Equation (2-32) shows that the totel near-field covariance
function in the realistic situation involving coupled radiating
elements consists of two components, namely the intrinsic covariance
and a second component denoted herein as the interactive covariauce.
The interactive covariance is present only when the radiating elements

"interact", i.e., are electromsgnetically coupled. A third component

of thne near-field covariance function, denoted as the iuntra-element

5 0a

] ,
4
5
I 20
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1

covariance, occurs for multimoding waveguide antennas due to
correlation among the modes propagating within cach separate waveguide
element proper. This covariance contribution is absent for the wire
array under consideratior.

It should be noted that the near-field covariance function for the
wire array given by Equation (2-32) is scan-invariant. This result
follows from the fact thar the mutual admittances are scan-invariaut,
Of course, the statistical average amplitudes and relative phases of
the electric field at each sample point dc change wiih scan angle. The
near-field covariance functions for a multiwoding out-of-band waveguide
array may change with scan angle due to changes in average wode
excitations with scan angle.

2, Numerical Study of Wire Array

Numerical simylations were conducted to study both the near-
field and far-field radiation characteristics of a linear array of nine
center-fed wire elements. The array elements have length 1,/2, wvhere
A, is the free-space wavelength at the design in-band frequency of 3.0
GHz, and are spaced A,/2 apart along the y axis. Each wire elewent is
assused to be fed by a constant amplitude voltage source, and each
source is assuwed to be matchted to a 50-Chm at both in-band and out-of-
band frequencies,

The following data were computed for an array of coupled elewents
and an array of "isolated" elements for both the in-band frequency of
3.0 GHz and and the out-of-band frequency of 9,0 GHz:

(1) Non-random {deterministic) near~field power distributions
and far-field power patterns,

{2) Random {Monte Carlo) near-field power distributions and
far-field power patterus,

(3} Analytical statistical average nesr-field power
distribution and analytical statistical average far-
field power pattern,

(4) Numerical averae far-field pattern and its associated

standard deviation based on 50 Mcnte Carlo random
far-field petterns, and

(5) NRear-field covarisnce func.ions.

29
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The data for Items (1) through (4) were computed for in-band scan-
angles of zero degrees and 30 degrees. The near-field covariance
functious for the wire array are scan-invariant aed, hence, they were
explicitly computed only for the broadside (zero-degree) scan
condition,

The near-field covariance functions and thzir effects on the
statistical average power patterns are the topics of paramount intevest
aad only there data will be presented and discussed herein. A eketch
of the simulated near-field measurement situation is shown in Rigure
2-6. The near-field Jdata were computed for 65 sample points centered
on the near-field sample line. The near-field sample line was chosen
to be BA wide and is located 23 from thz array,.

The key results of the numerical studiea can be summarized with
the aid of the data plotted in the group of Figures 2~7 through 2-10
for the in-band frequency of 3.0 GHz and the group of Figures 2-11
tarough 2-14 for the out-of-band frequency of 9.0 GHz. Th:u data are
sequenced in the sase order within each group. The first figure in
each group is a plot of ¢he near-field power distribution for
deterministic (aon-random) excitation of an array of coupled current
elements for broadside scam. This plot is followed by plots of the
scan-invariant, near-field atatistical covariance functions and plots
of the corresponding statistical average far-fieid power patterns for
broadside scan. The statistical data ir each figure are displayed for
interacting (coupled) array elementa and non-interacting (isolated)
array elements by the plots labeled B and A, respectively. All of the
nesr~field plots in Figures 2-7 through 2-14 are normalized with
respect to the peak magnitude of the non-random, in-band, noar-field
power disiribution shown in Figure 2-7,

The geoneral behaviur of the near-field covariance functions may be
discerned from Figures 2-8 and 2-9 for the in~band fraquency and
Figures 2-12 and 2-13 for the out-of-band frequency. The covariance
functions for the center sample point with all other points are
symsetric about the centar point, while the covariance funccicas for a

sample point opposite the edge of the array with all ocher sample

reints are asymmetrical, This behavior is expected because the array
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is finite, An infinite array would everywhere have a symmetriccal
cosariance function. The total covariance function has pgreater pesk
magnitude than the intrinsic covariance, and alsoc has broader lobes.
These differencee are more pronounced for the in-band frequency. This
is reasonable because the current elements are only weakly coupled at 9
GHz, Accordingly, the interactive covariance component of the total
covariance is much smaller than the intrinsic covariance component anu

hence the total and intrinsic covariances do not differ markedly at 9.0
GHz.

The behavior o the statistical average far-field power patterns
may be examined vii the plots shown in Figure 2-10 for 3.0 GHz and
Figure 2-14 for 9.0 GHz. The statistical average patterns for the
array of interacting current elements have greater peak magnitu:le and
decrease more rapidly versus azimuth angle than the average patterns
for the array of non-interacting current elements. The difference in
the ave-age partterns for interacting and non-interacting elements is
more pronounced for the in-band frequency than for the out-of-band
frequency. This result could have been anticipated from the near-field
covariance functions because the total and intrinsic near-field
covariances are significantly different for 3.0 GHz but are only
slightly different for 9.0 GHz. The results for other scan angles not
displayed herein are entirely consistent with the results for the
broadside scan angle.

It can be inferred from these results that the intrinsic
covariance function is a "good" engiueering approximation to the total
covariance function if the inter-element coupling is sufficiently weak.
Further numerical studies or, preferably, measured data are needed to
determine if the inter-element coupling of multimoding out—of-band
waveguide phased arrays is sufficiently weak to permit valid estimates
of the average far-field power patterns to be obtained in this wmanner.
0f course, it is preferable to determine the total covariance functions

from the measured data. This posaibility is addressed in the following

euhsection.




3. Recovery of Covariance Functions from Measured Data

In principle, the covariance functions can be recovered from
the measured stastistical data vis matrix algebra, as followa. The
near-field covariance function cq-q is related to the current

covariance function C. via Equation {2-26), to wit:

L

] = * -

*
where Ggq and Gz.q, are the Green's function and its conjugate, as
previously defined by Equation (2-27), This equation is equivalent to
the matrix egquation

AD = B (2-35)

where D and B are column vectors corresponding to the element current
covariances and the near-field covariances, respectively, and where A
is the matrix formed from the product of the Green function and the
appropriate conjugate Green function. Equation {2-35) may be written
in terms of the matrix elements Ajj and the column vector components Dj

and B; as

Ej Aj; Dj = B; (2-36)

where rthe indices i and j are related to the (4£',%) indices and (gq',q)

indices as
i=gq, (2-37)

where q' is fixed, and

j= 2+ (2" -1) L. (2-138)




1f A is square and uon-singular and the right hand column vector B
is known from measurement, the unique solution for T can be obtained by
solving the set of linear equations obtained from Equation (2-36). The
index j wust vary from 1 to L2, where L is the number of radiating
¢lements, and we chcose i=l to LZ so that A will be a square mrtrix.
This choice ¢f maximm i=LZ deans that measured values of the selected
rear-field covariance function must be supplied for LZ sample points on
the near—field plene.

The matrix A will be non-singular if its determinant is non-zero
[{12]. Computer calculations of the determinants for 3-element array
and for a 9-element array were performed using double precision
airthmetic. These computations wure conducted for several different
near-field distances and for several differemt sets of ssmple point
spacings for each near-field distance. It was found that the computed
determinants for the 3-element array ranged from 1075 to 1078. The
computed determinants for the Y-element array ranged from 1012 to
10714,  These results imply that the matrix A is "nearly" singular,
These numerical results do not prove that the matrix is non-singular
because the computations are subject to non-negligible errors despite
the use of double precision arithmetic. However, iaspection of the
matrix celements further supports the notion that the matrix is non-
singular but that it is nearly singular. The elements of the 9x9
matrix for the 3-element array sre shown in Table 2-I, It can be
discerned that the matrix elements do not dif’ markedly from each
other. However, inspection of the fu'l wmatrix ows that no two rows
are the same nor are any two rows related by a stant. Similarly, no
two columns are the same nor are any two columnc r. 'ted by a constant.
Thus, one may conclude that the matrix is non-singu.sr. One may also
conclude from the determinant computations and from the fact *hat the
watrix elements are so similar that the matrix is "nearly” singular.

One anticipates trcuble in mmerical computstions invelving a
nearly singular wmatrix. Most computer programs designed to numerically
perform matrix inversions or to solve systems of equations work well

for a diagonally deminant matrix, but they car fail badly for a macrix
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that departs "too much" from the diagonally dominant situation. The
matrix A is certainly "ill conditioned” in comparisor to a diagonally
dominant matrix. Consequently, the more common methods such as
Gaussian elimination with iterative improvement or the iterative Gauss-
Seidel and Jacobi techniques [13] failea to converge to accurate, or
even sensible, answers for the 9-element array. A straightforward row
reduction technique written for this problem gave good results for 3-
element and 5-element arrays, but produced grossly erroneous results
for 7-element and 9-element arrays;

Acceptable numerical results were finally obtained with an
algorithm based on a projection method for solving singular or nearly-
singular systems of equations [ 14]. This same method has been employed
in the analysis of probe compensation errors conducted under this same
contract and is well documented in Reference [15]. The basic method of
solution can be summarized by considering the expression for the

(m+1)th jterate,

[D(m),am] - B_
(a2 .a ] &m (2-39)
m m

p(m+l) = pm -

where D(®) jis the solution after m iterations of this equation, ay is
the mth column vector of the transpose conjugate matrix of A, By is the
mth element of B, and where the square brackets denote the inmmer
product of the enclosed quantities. A formal proof that this sequence
convergés for any ;, B, and initial guess p{o) s presented in
Reference [14]. 1f the system of equations is consistent, it then
follows that the limit point is a solution of the system.

The real parts of the exact values of the normalized current
covariances and the values computed from the projection algorithm are
plotted in Figure 2-15 for a 9-element wire array operating at 3.0 GHe.
The plotted data are normalized to the largest value of the exact
current covariance. The data are symmetrical about the center point
(5,5) and, hence, only the data for (1,1) through (5,5) are plotted.
The magnitudes of the imaginaryg parts of the exact and estimated
covariances are < 0.012 and < 0.04, respectively, and are therefore

not plotted. The computed values plotted in Figure 2-13 were obtained
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by iterating Equation (2-39) 100 times, which took 57 seconds of cpu
time. Additional iterations produce neglible improvement of the data.

The initial starting value for the iterations was
Di> Cpyp =(L+/L) expl~.693(2'-2)2] (2-40)

The right hand column vector B for this computation was the self
covariance function Cgq, which is just the variance of the electric
field on the near-field measurement plane. (Similar results are
obtained if a measured cross covariance function is used as the known
right hand column vector). The computed element covariances generally
replicate the prominent "lobes" of the exact element covariances.

Plots of the magnitude of the exact and computed near-field cross
covariance function Calq (for q=1,81) are presented in Figure 2-16.
The computed curve in the figure agrees closely with the exact curve
over the portions of the graph where .CQIq is large. The close
agreement is attributed to the fact that functions obtained by summing
or integrating over a large number of complex quantities are usually
insensitive to small errors in the summand or integrand.

The results just discussed indicate that useful estimates of the
near-field covariance functions can be obtained from a knowledge of the
self covariance function on the measurement plane. Knowledge of at
least one cross covariance function is also needed in order to provide
a good check of computational accuracy. Additional research is needed
in order to determine the feasibility and accuracy of this method of
recovering the covariance functions for arrays comprised of hundreds or

even thousands of elements.

D. Probability Density Functions
A thorough characterization of the radiation pattern statistics

can be obtained if the probability density function (p.d.f.) for either
the radiated field amplitude or the radiated power density can be
discerned. Once the p.d.f. is known, the standard deviation or any
other higher order statistical moment can be computed. Similarly, the
cumulative probability distribution (c.p.d.) is readily computed by

integrating the p.d.f. Of course, the computationes of the statistical
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moments or the c.p.d. may have to be performed anumerically because
closed-form analytical expressions consisting of a finite sum of
elemetary functions for the integrals involving the p.d.f. may not be
available. Nevertheless, it is ususlly more efficient to compute
radiation pattern statistical data via the use of a reasonably accurate
p.d.f. thar to compute radiation pattern statistical data directly in
terms of the near-field statistical data as was done for the average
radiated far field power density.

A study of the wmodern literature concerning electromagnetic
scattering and radiation statistics indicates that the p.d.f. derived
by M. Nakagami [16] in 1954, and that als¢c was independently derived by
P. Beckman [17] in 1961, is the wost general ome. Other p.d.f.'s for
radiation/scattering, such as thcse due to S.,0, Rice, Hoyt, and Lord
Rayleigh [ 18~20 ] may be derived from the Nakagami p.d.f.

The key assumption in the derivation of the Nakagami p.d.f. is
that the real and imaginary parts of the randomly varying
electromagnetic field both follow a Gaussian p.d.f,., The Gaussian
p.d.f. is an excellent approximation to the true p.d.f. if the electric
field is produced by a large number of statistically independent
sources. In practice, about 7 or more statistically independent
sources are sufficient to yield closely Gaussian p.d.f.'s for the real
and imaginary parts of the radiated field.

It may appear at first sight that the Nakagami p.d.f. is not
applicable to the randomly excited wire array stvdied in subsection C
because the element currents, as well as the wmeasured near-field
electric fields, are definitely correlated. However, the radiated
electric fields at any point in the near—-field or the far-field of the
antenna can be expressed 35 a sum of terms involving non random matrix
eilements multiplied by the statistically independent random input
voltages. Specifically, the electric field Eq is related to the input
voltages Vg as

E G (2-41)

9" 558 Tucs

where all other symbols are as previously defined. The real part Xg of
Eq and vhe imaginary part Yq of Eq are then
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Xqg = E [(Bpigp(vedp — (Hidgp (Vidp ] and (2-42)
P
|
i Tor DL (gpVelp + (rdgp(vidp | (2-43)

where

(V¢)p = the real part of the cowplex random
input voltage Vo

(vi)p = the imaginary port of the complex
random ioput voltage Vp, and

where the coefficients of (Vi) and (Vi)p are

pt

The real part of Eq given by Equation (2-42) and the imaginary
part of E; given by Equation (2-43) sre each just the sum of
stastiscically independent random variables, and if the number of

voltages is 2 7, the p.d.f. for X and the p.d.f. for Y will both be

" T

Gaussian [ 17} to good approximation. Hence, the amplitude of the
radiated field will follow the Nakagami p.d.f. This is true for both

CRUPGT

the (radiating) near-field amplitude and the far-field amplicude.
The derivation of the Nakagami: p.d.f. involves the use of the

joint probability densgity of X and Y. The joint p.d.f. for two

k Gaussian random variables X and ¥ is known to be [ 8 )
3
1 {x-<x>l2 (Y—<y> 2
T = 35y lexe [ - )
192 g, 2
exp { 2p[X-<X>]]¥~<Y>] 1} (2-46)
2y2g;10,
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where X and Y are the average values of X and Y, and o] and 62
are the standard deviations of X end Y, respectively. p is the
correlation coefficient for ¥ and Y, and =V’-f:-;;?— . We have omitted
3 the subscript q from X and Y for coavenience.

1 The Nakagami p.d.f. f{P) for the power density P is preferred here

{- and is obtained as follows. First, the joint p.d.f. for X and Y is

expressed in polar coordinates by replacing X and Y by

] X = VP cos(¢) and (2-47)
Y = VP sin(¢) , (2-48)
where P - X24v2 | and integrated over the annular ring of thickness i
ﬁ dS frum 0 to 27 , to wit: i
3 !
2T :
2 . 2 '
! £(P) = amdg. - exp { _ ?1;2[ WP cos($)-<X>)"  &Psin($)-<¥>) ]
[: 1Ye 012 022
i 0
!
; X exp 2p [ﬁcos(_gl—db][ﬁ sin(¢)-<¥>] ¢ .
2¥< yoy0, |

(2-49) :
Next, the integral is expressed as an infinite sum involving wmodified
Bessel functions of the first kind and integer order. The resulting . !

expression for f(P) is then i

f(P) = — L exp igP + hAZ] '
af |

¢

x el PRA_L I 2 . da2+b2 cos{(ng) .

n nnj2 8 153 2n i

(2-50)




where ¢, is Neumann's factor ( ;=1 for n = 0 and ¢,=2 otherwise) and

where the other symbols are defined as follows:

1,1 1
= —_ —_ - 2' 1
g 2 (a +3) (2-51)
2 2 2 ;5 .
a= 01 + 0 + [ 2p° + (01 - 02)] ’ (2-52;
2 2
B = Gl + 3'2 - [ l.pz + (01 - 02)] %' (2_53}
A= <x 24 <y>2 | (2-354)
A
a= - coa(6) ~ 6,) , (2-55)
b= A gin(é - 4y , (2-56)
8
8, » 1, -1 <> 2-57
1 '2- tan [ <> ] N ( )
-1 2p ]
§, = 1 t ’ -
2 '2‘ an [ 01"021 (2 58)
h=a2ygs+b2g , and (2-59)
£ = tan~! [%— [tan(ﬁ;-éz)]] . {2-60)

All of the new quantities for this expression for f(p) are
computed solely in terms of the same variables that are needed to
define the joint p.d.f. for X and Y. These are (1) the average values
of X and Y, (2) the standard deviations of X and Y, and (3) the
correlation coefficient for X and Y. It should be noted that these
variables generally depend on frequency, array scan angle and the
coordinates of the field point under comsideration. In particular, the
far-field power density P = P(w,¢) depends on frequency, the azimuth
angle of the field point, and the array scan angle.

The average values and standara deviations of X sand Y as well as
their correlation coefficient p can be computed with the aid of

Equations (2-42) and (2-43) when the statistics of the input voltazes

are specified from theory or experimect. The equations for X ,
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Y , %, % and P can be computed directly in terms of tke input
voltage statistical parameters.

The average values and standard deviations of X and Y are also
readily obtained from a Type 11 near-field measurement as described in
sybgection C. The computation of the correlation coefficient p from
the measured data for arbitrary random excitations involves problems
similar to those encountered for the covariance functions that were
discussed in the preceeding subsection. However, it is possible to
obtain valid estimates of P by assuming that the random voltage
variations have the same variance at each element,

Numerical analyses were conducted to assess the validity of the
Nakagami p.d.f. for computing the far-field amplitude p.d.f. for the
nine element wire array described previously im subsection C. The
computations of the Nakagami p.d.f. were accow, lished by numerically
integrating the expression for f(P) given by Equation (2-49) rather
thar by summing the series expression given by Equation (2-50). These
computations were performed for two different sets of input parameters

X , Y , 0y, 02, and p to the Equation (2-49). The first set of
input parameter values were the values of X , Y , ¢, 92, and
computed by specifying the input voltage statistics for statistically
independent input voltages, This set forms a proper set of input
parameters for the Nakagami p.d.f. The second set of values for X ,

Y , o, 03, and p were computed directly from simulated correlated
voltages with an assumed Gaussian correlation function. This set of
input parameters involves correlated "sources" and therefore violates
the strict criteria for obtaining the Nakagami p.d.f. The input
voltagee for both situations had Gaussian phase distributions with zero
mean value and standard deviation of 57 degrees on all elements. The
Gaussian correlation for the correlated voltages was

2 -
Cl;'l = expl~[.693 (-2") ]] {2-61)

where ¥ and «' are element numbers.
Monte Carlo calculations were performed to produce data for

constructing the cumulative probability distribution for the far-field
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amplitude in the boresight direction along the nose of the mainbeam and
in a direction of a low sidelobe. The cumulative distributions wvere
obtianed from 50 Monte Carlo runs. The cumulative distributions based
on the Nakagami p.d.f. were obtained by numerically integrating f(P).

Plote of the cumulative distributions are shown in Figures 2-17
through 2-20. Each figure is a plot of the probability that the field
amplitude is "less than or equal to" the abscissa. The abscissa in
Figures 2-17 and 2-19 is the relative amplitude in real numbers while
the abscissa in Figures 2-~18 and 2-20 is the relative amplitude in
decibels. The abscissas were scaled in this wmanner to display the
interesting fact thar the cumulative distribution resemble Gausaian
cumulative distributions when plotted this way, in agreement with
theory for the mainbeam and low sidelobe regions [ 2], Each figure
contains two cumulative distribution c'.rves. These are (1) the curve
constructed from Monte Carlo data, (2) the curve obtained from f(P).
The distributions in Pigures 2-17 and 2-18 correspond to the
statistically independent voltage sourcas, and distributions in Figures
2-19 and 2-20 correspond to the correlated input voltages.,

Inspection of the plots contained in Figures 2-17 through 2-20
shows that the Nakagami curve obtained for statistically independent
sources 18 in very good agreement with the Monte Carlc curve. Fxact
agreement is not expected because the Monte Carlo curve is constructed
from "only™ 50 runms,. The Nakagemi curve obtained for correlated
sources is slightly less accurate but it is a ressonable approximarion
to the Monte Carlo curve.

These results serve to verify Naksgam's p.d.f. for atatistically
independent sources and they also indicate that it may be a useful
eungineering approximation for certain classes of moderately correlated
sources, Namely, it way be applicable for near-field measurements
involving randomly excited waveguide arrays for situations where the
envelope of the near-field covariance function Cq'q decreases at least
as rapidly as (17 q-q' ) as the difference between q and q' becowmes
"large." This condition appears to be truz for the near-field data for
the wire arrays cousidersad in this study. However, further studies are

needed to establish the range: of applications for which the Nakagsmi
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p.d.f. can furnish vaiid cngineering estimates of radiation statistics
for correlated sources in general and fcr out-of-band waveguide arrays
in particular.

A simpler but less accurate approxizate expression for the
radiation amplitude can be obtained that is nevertheleas potentially
useful for some engineering applications wvhere less accuracy can be
tolerated, The expression is derived by first ignoring the correlation
between the real and imaginary parts of the radiated field. The
effects of near-field source correlation are then incorporated as fart
of a parameter that appears naturally in tlie expression that was
derived by ignoring the correlation between the real and imaginary
parts of the radiated field. The approxicate expression for the

radiated power density obtained in this manner is

1 P(u,$) + n°w,4)
£(P(w,9)) = FToSY cxp[- = o) 2 ] I [8(w,4)] 5 (2-62)

where f{ P(w ,¢ )] = probability density function for the far-field

o power density,

12 (w,9) = <E*(w,¢P> <E(w, 4> , (2-63)

w
(w) = Lt Cq.q exp(iz sin(é)(‘lq.-‘lo)] , (2-64)
I [*] = Modified Bessel function of the first kind (2-65}
° and order zero, and
Blw,é) = n(w,¢) Plw,¢) . (2-66)

% ()
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Plots of the cumulative distribution computed from this equation
are compared with the cumulative distribution obtained from the Monte
Carloc data are shown in Figures 2-21 and 2-22; Resonably gcod
agreement is obtained between the Monte Carlo curves and the curves
computed from Equation (2-62). However, additional testing is needed
to properly define the limits of applicability of this relatively crude

p.d.f. for anteana prcblems,

E. Time Domain Statistics

It is a well known fact that the time domain response of a
deterministic radiating system can be analyzed conveniently from a
knowledge of the complex frequency response via the Pourier transform
technique. The same procedure can also be emploved to obtaip the
statistical average time domain response of a randomly excited
radiating system. The probatility demsity function (p.d.f.) for the
time domain response can alsc be discerned from the stochastic
equariosns obtained in this manner,

The behavior of the far-field electric field as a function of time

t is obtained from Feurier analysis of the frequency response as
1
E(c - 2-67
(t,4) = 27 o E(wn.o)exP[junt] ( )

where

E{t,4 ) = complex electric field at azimuth angle ¢ vorsus time,
and

E(mn,O) = the complex electric field at azimuth angle ¢ for
radian frequency @ =»2xf,where f is the frequency in
Hertz.

E( Wy ¢) is the product of the input pulse spectrum H( :un) and the
frequency response EO( 2 $) obtzined from a uniformly weighted input
frequency spectrum of width exceeding at least twice the bandwidth of

H(w;). Hence,

E(w,¢) = EOC @ , $) -« H( w ) (2-68)
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The power density P(t, ¢ ) is then computed as E*(t, ¢) - E(r, ¢ ) and is

written explicitly as the double sum

P(t, ) = L, L s*(mn., ¢)E(w_, ¢dexp [i(w ~w Jt] (2-68)

The time domain behavior of a pulsed stochastic antenna system can
be obtained with the aid of the preceding frequency-domain equations
and the Fourier transform with respect to frequency. In particuiar,
the time dependent statistical average complex far-field electric field

ray be written as

<E(t,$ > = E]";Zn <E(mn,¢)> exp [jo t] (2-69)

In analogy with the techniques described previously for compuring
average power density, the statistical average time depeandent power

density is written as

<o, o> = B (r, 41> - <JE(E, 0> (2-70)

+ L E;‘; I D LS R, W) exp (3w -0 t],
(n'# n)

where En = gtandard deviation of E( wesd )
E“. = gtandard deviation of E¥(w n,,¢ ), and

Rn'n('w) = ¢ross-correlation Function of E(w art ) and E*(qu nt?® ).

The cross-correlation function Rn'n( w) 9appearing here is not a tiae
correlation function but rather is a frequency-cepeudent correlation
function for the electric field and its conjugar: at differexnt
unless the radiating system contains non-linear devices that have
pronounced hysterisis or contains devices whose characteristic response

time is commensurate with the input pulse width.
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The p.d.f. f{P(t, ¢)lof the time domain power density P(t, $) is
the Rakagami p.d.f. when the field and its conjugate acr differeat
frequencies are uncorrelated. Thie can be deduced at once by
recognizing that the ves! and imaginary parts of the =zlectric field
E(t,¢ ) each cousist only of sums of statietically independent terms
vhen the R , are zero. The input parameters for the Nakagami p.d.f.
are the average values of the real and imaginary parts of E(t,% ),
their standard deviations, and the correlation coefficient for the real
and imaginary parts of E(t, ¢). The correlation coefficient for the
real and imaginary parts of E(t, ¢) 1is, of course, non-zero even
vhen the frequency cross correlation coefficients Rn'n are zero.

A numerical simulaticn of the pulse distortion suffered by a
rectangular pulse radiated by a reflector anteanaz for both in-band and
out-of-band frequencies for deterministic conditions is presented and

discussed in Section V.
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SECTION III
NEAR-FIELD ANTENNA-ANTENNA COUPLING

A, Introduction

An exact analyeis of the coupling between real-world cosited
antennas would be extremely difficult or perhaps impossible to achieve.
Accordingly, the efforts on this task were devoted to deriving
approximate but accurate coupling prediction equations. Three
different techniques for coupling analysis were considered. These
three techaiques are denoted respectively as (1) Plane Wave Spectrum
(Pws), (2) Spherical Spectrus Wave (SWS), and (3) the Ceometrical
Theory of Diffraction (GTD). Most of the research efforts were devoted
toward development of the PWS technique. Multiple scattering effects
are not addreased in the analysis. However, wmultiple scattering
effects can be approximately analyzed if the scattering matrix of each
antenna is specified from theory or measurements. Theory and equations
for the PW4S and SWS approaches are presented and discusseq in
Subsection B and C, respectively. Some results of numerical
simulations for PWS approach are also presented in Subsection B, The
GTD technique for deterministic antenna analysis has been adapted to
yield comwmpavatively simple equations for certain classes of antenna
coupliang problems. Discussions of the GTD technique are contained in
subsection D.

The analyses preseated in this section were conducted ian the
frequency domain. The primsry gosl was to obtain equations valid over
vide frequency bandwidths. The time domain response can then be
obtained by numerically computing the Fourier Transform of the
frequency domain equations. The wideband frequeancy response of swept
CW radiating systems can be characterized by numerically computing the
frequency-averaged patteru and standard deviation, as described in the

previous section.

B. ©®WS Analysis

The general plane wave spectrun scattering wmatrix theory was
originally fermulated to treat antenns coupling problems and it is well

documented in Reference [21], The theory and equations are directly
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applicable to antenna coupling situations shown in Figure 3-] where ome
antenns is in the forward half-plane of the other antenna and the relative
rotation angles a aad 8 defined in Figure 3-2 are less than about 70
degrees in wmagnitude. The application of the PWS analysis to other
arrangements that do mnot cbey these criteria depends on the ability to
select suitably "canted” reference planes with appropriate spatial filters.
This is a recommended area for future research. The PWS analysis for the
canonical situation depicted in Figure 3-1 is discnssed in the following
paragraphs.

The complex voltage V(R, 5 Bq) induced in Antenna B when illuminated

by Antenna A is derived from PWS analysis as

V(R “pa Bq) = o annx(ky-,kzn)- S(ky. - %P,kzn ~ Czq).exp[ -jkgn* R}
(3-1)

where

A(ky-,kzn) = transverse vectorial plane wave spectra of Antenna A,

B(kym - Syps kegn - izq) = shifted transverse vectorial plane

wave spectra of Antenna B,

ky. = mth yalue of ky in the range - ko < ky < Koy

kzn = nth value of k, in the range - k, < kg < kg,

Zyp ™ kosin(ay), evaluated at the specified azimuth

rotation angle Y

Lzq = kosin(Bg), evaluated at the specified elevation

rotation angle Bq,

- - : 2 - k.dy)k
kan = kymn X + kym 7 * kg z, vhere kem = (k3 - kya ~ Kza)

and the x, ; and z are unit vectors,
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Figure 3-1. Sketch depicting the arrangement of
two antenn
for the PWS analysis of coupling. as appropriate
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Figure 3-2. Shetch depicting the azimuth rotation sngle - and
the elevation rotation angle B associated with
Aonteana B of Figure 1.




R =Xx+Yy+ Z2zwhere X, Y, and Z are the cartesian
coordinates of the center of rotation cf Antenna B

relative to the center of rotation of Antenna A, and
co = a frequency-dependent proportionality factor.

The proportionality factur ¢, is independent of antenna arrangements and
orientations and will be suppressed in the cemaining equations. The power

coupled in Antenna B is
P(R, ap, Bq) = lv(r, a8y 1% *lcousy = 1) (3-2)

where Fr is the real part of the cumplex admittance at the output port.
The PWS of Antenna A may be expressed in terms of the propagating

modes in the wavesguide feed as

Alkyyykzn) = EQZKXU a, T(CEK)Hu (g, dexp [ 'j(kYmYn + kzn 2)]
' (3-3)

where

a = the complex excitation coefficient of the ,th
waveguide propagating mode,

T(EQK) = optical transform, computed as (1/2) .[1 + cos (CRK)] ,

H (g, ) = the far-field vectorial pattern of the feed horn
TR X'y
when only the th mode propagates,

YQ’ZK = points on the reflector aperture.

The angle , ~ and the reflector apertire coordinates are depicted in Figure
3-3. Equation (3-3) can be rewritten as the sum of the reflector
transverse vectorial spectra A u(kym,kzn),

K(kym,kzn) - Euau Ku(kym’kzn) . (3-4)

The correspunding cquations for the PWS of Antenna B are
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Focal Point

(l' '0'0 ’

Figure 3-3. Sketch depicting the antenna aperture coordinates
Y,',Z‘l and the optical transform angle Lok




Bk ,k )= Xy ibT il oxp | =i . 3-5)
ym yn) 2Tk ulul(ﬁkx)“(GEK)LXpl J(kmeQ + anLK)] and (3-5)

the alteraztive form,

Bk, k =Y b B 3-
Gmpkan) =2 b B (e, ) (3-6)

where

b = the complex excitation coefficient of che ,th waveguide
propagating mode, and

all other symbols are as previously defined,
The equation for the statistical average power P(ﬁ,ap,Bq)

coupled to Antenna B when illuminated by Antenna A is derived as

]
E]

=~ o . ~ * '
<P 8> = DT 5 {[<“u-> <a >+ [<or><o >+ b ]

% % - -
X Aul (kym'kzn').Bu'(kym' - kyp’kzn' - kzq)CXP [kacnv'R]
A sk )eB - , - -jk__* R
x Au(kym; zn) u(kyn kyp kzn kzq)exp [ kan R]
(3-7)

where the statistical quantities are defined as
<:au:> = gverage value of the complex mode excitation
coefficient a,

<:hu:> = average value of the complex mode excitation
coefficient bu .

' = covariance function for atl and a- and
‘ = covariance function of b* and b, .

The wavevector kmn is defined as kmn - kxmn + kyn Yy + kgpz. Similarly,

km- v is defined as km' * = Kym'n' x + Kym' y + kan z.
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Numerical simulations were conducted to compute the pover coupled
between a pair of cosited auntennas. The antenna arrangement is shown in
Figure 3-4. Antenna B is displaced a longitudinal distance X and lateral
distance Y from Antenna A, The antennas are not displaced in the vertical
Z direction., The power coupled to Aatenna B versus the rotation angle was
computed for selected values of x and y for rotation a2ngles in the range -
30 degrees to +30 degrees. Only the azimuth Plane Wave Spectrums of the
antennas were used in the calculations.

The apertures of Antenna A and Antenna B are 24 inches and 48 iaches,
respectively. The antenas are fed by WR-187 waveguide whose cutoff
frequency for the TEyg mode is 6.309 GHz. The in-band operating frequency
of each antenna is 5.5 GHz. Calculations wvere made for the in-band
frequency of 5.5 GHz and the out-of-band frequency of 6.5 GHz. The power
flow in each waveguide feed is entirely in the TEjg mode at 5.5 GHz. The
TEjgp and TE;q modes can both propagate at 6.5 GHz.

Antenna coupling can be conveniently described in terms of the mutual
gain M(R,a) relative to a pair of isotropic radiators. M(R, a) is computed

as

Y (3-8)

2 -
H(ﬁ, a) = ("_"E) E_.(%J&)

a

where A is the operating wavelength and P, is the power input to Antenna
A. For the purpose of this study, a power transfer efficiency factoer of
1.0 is assumed for Antenna A and, hence, the totzl power radiated by
Antenna A is assumed to equal the input power.

The in-band, far-field antenna patterns of Antenna A and Antenna B are
plotted in Figures 3-5 and 3-6, respectively., The estimated theoretical
gain relative to an isotropic radiator is indicated at the top of each
plot. The antennas were regsrded as linear apertures withk an "aperture
efficiency” of 0.9 relative to comparable uniforwmly illuminated apertures
for purposes of estimatiag the gain.

Out-of~band anteanns patterns for the two anteanas are shown in FPigures

3-7 and 3-8, PFigure 3-7 shows the out-of-band pattern for Antenna A for

equal power flov in both wmodes with the phase of the TE2p mode +35°
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relative to the TEjg mode. Similarly, Figure 3-8 shows the out-of-band
pattern for Antenna B for equal power flow in both modes with the phase of
the TEjg mode -50°0 relative to the TE;( mode.

The in-band to in-band mutual gain of the antenna pair is shown in
Figures 3-9 and 3-10. Each figure sﬁows a plot of the mutual gain
expressed in decibels versus the rotation angle o in degrees for the
indicated values of longitudinal separation distance X and transverse
separation distance Y. The mutual gain relative to a pair of isotropic
antennas is displayed at the top of each plot.

The out-of-band to out-of-band mutual gain of the antenna pair is
shown in Figure 3-11 for the indicated out-of-phase modal propagation for
the longitudinal separation distance of 20 feet and lateral displacement of
5 feet.

Two general trends common to the in-band to in-band and the out-of-
band to out-of-band situations may be discerned from inspection of the
plots shown in Figures 3-9 through 3-11 and from additional plots contained
in Reference [5]. First, the peak value of the mutual gain decreases with
increasing lateral displacements for a fixed longitudinal displacement.
Sccond, thz peak value of the mutusal gain increases with increasing
longitudinal displacement for a fixed lateral displacement. Both of these
trends are consistent with theory. However, the peak mutual gain may
exhibit "peaks" and "valleys" if the computation were made for a "finely-
grained” set of coordinates. Nevertheless, the "envelope" of the peak
mutual gain would exhibit the cited trends.

The peak mutual gain for the in-band to in-band situations always
occurs at, or very near to, the rotation angle at which Aatenna B points at
tne center of Antenna A, whereas the peak mutual gain for the out-of-band
to out-of-band situations is shifted a few degrees. The direction and
magnitude of the angular shift depends on the mode excitation in the feeds
of of the two antennas. The magnitude of the peak mutual gain alsov varies
with mode excitations. All of these trends are consistent with theory in
the sense of "coarse-grained" behavior menticned previously.

Next, consider the situation depicted in Figure 3-12 where the
transmitting anterna illuminates a cylindrical obstacle located between the

transaitting and receiving antennae. In order to determine the effect of
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the interpused obstacle on the antenna coupling the total transverse

spectrum for the transmitting antenna and the obstacle which is incident
upon the receiving antenna wust be determined. This calculation, which is
fully described in References {21] aad {22}, is the basis for the
evaluation of the far-field pattern degradation caused by the near-field
obstacle, For the case of the interposed obstacle, the spectrum incident
on the receiver is the sum of the transmittiung antenna spectrum A(k) and
the obstacle scattered spectrum A% (x) given by Equation (5-8) of Sectiom V.
Assuming that the multiple reflection effects are negligible, the complex
voltage response can be computed from Equation (3-1) by replacing the

antenna spectrum A(k) with the composite spectrum
Ac(k) = A(k) + As(i) e Ikxke (3-9)

The method of computation of the integral is thus the same wvhether or
not an obstacle is present. The only difference is whether the anteanas
spectrus A(k) or the sum of the antenna and obstacle scattered spectrum
A (k) is employed for the computation.

The planc wave spectrum scattering analysis algorithm was used to
construct a data file corresponding to the sum of the transmitting antenna
and obstacle scattered spectra, A second data file is then loaded with the
receiving antenna spectrum, and the transmission integral evaluation is
performed.

Recail that, for & tall cylindrical obstacle, the scattering matrix
element function in the vertical (¢ = coustant) plame is of the form SIN
(Z) /(2). The antenna spectra in the vertical direction were also
approximated by appropriately chosen functions of SIN (Z) /(Z) forwm. These
functions were chosen to produce the correct 3-dB beamwidth for the test
antennas. The computation can be further simplified if the coupling
integral is performed only over the azimuth plane (i.e., 8 = /2, k.’
variable). This approximation is termed a “linear spectrum" approximstion,
and it was found that this approximation, for the cases considered herein,
was a good approximation to the use of the complete (ky,k;) spectra. Thus
the "linear spectrum" approximation was used to derive the antenns

decoupling datas.
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Measured data for both 6~inch diameter and 24-inch diameter cylinders
located between 48-inch diameter paraboloidal, vertically-polarized
reflector antennas operating at 5.5 GHz were available from previous
meagurement nrograms ( 23 ] . Figure 3-12 shows the antenna/obstacle
geometry. The calculated antenna decoupling caused by the interposed 6-
inch and 24-inch diameter cylinders for antenna separation distances of 17-
feet and 47-feet is shown in Figure 3-13, The term "decoupling” is defined
as the ratio of the received voltage with the obstacle present to the
received voltage with the obstacle absent. Thus, the decoupling represents
the decrease in mutual coupling due o the interposed obstacle.

As shown in Figure 3-13, the calculated and mesrured results for both
the b6-inch and 24-iach diameter cylinders for the #&7-foot separation
distance are in very good agreement with the average measured data. We
note that the actusl measured data exhibit a periodic oscillation about the
average values presented herein due to multiple refleciions bhetween the
obstacle and antenna. Since these reflections are not considered in the
present analysis, it is appropriate to compare the calculations w.th these
average data. The typical maximm/einimum bounds on the measured data
deviate from the average vaiues by approximately *1.5 dB and *0.5 dB for
the 24-inch diamater aud 6-inch diameter cylinders, respectivelv.

The calculated decoupling for the 17-foot separation distance for the
6-inch diameter cylinder is also in very good agreement with the wmeasured
data. However, the resulits for the 17-foot separation distance for the 24~
inch diameter cylinder exceed the measured data by a few decibels due te
the approximations that wvere made in the snalysis.

Plots of the measured and computed mutual gain versus the azimuth
pointing angle of the receiving antenna are shown in Figures 3-14(a) and 3-
14(b). The watual gaia plots shown in Figure 3~14(b)} vere obtained with no
obstacle present. The mutual gain plots shown in Figure 14(b) were
obtained cbtained with & 12.0-footr tall, 2.0-foot diameter mxst located
midway between the two &4.0-foot diameter paraboloidal reflector antennas
that were sepsrated 17.0 feet spart. The computed data wvere obcained vias
Equations 3-1 amd 3-8. The elevation patterns of the antennas were
characterized in the approximste manner described previously, and multiple

reflections were ignored. Nevertheless, good sgreement between measured and
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computed data is achieved for this sample situation as well as for
situations involving cylindrical obstacles of ©,5-foot dianerer and
4.0-foot diameter. )
Application of the PWS squation to predict mutual coupling wvith an
obstacle located between the two antennas shown in Figure 3-1 and
displaced both vertically and laterally off the line joining the
antenna rotation centers is well wunderstood. The antenna/shstacle
situazion just .uscribed can be analyzed via existing equations.
However, the application of PWS analysis te handle the effects of an
intervening obstacle jocated between the two antennas depicted in
Figure 3-15 or a non-intervening obstacle such as a ccmmon wouatinug
pole tn which two or more antennas are attached are areas where further

research is needed.

C. Spherical Wave Spectrum Coupling Analysis

The formulation of the SWS coupling anzlysis can be ijillustrated
with the aid of <he cosited antenna pair shown in PFigure 3~15 and
the anteana coordinate system depicted in Figure 3-16. The various

symbols contained in Figures 3-15 and 3-16 are defined as

R = vector from center of Aatenna A ¢o center of Antenna B,
R' = vector from the center of Antenna A to a specified
near—-field poinl,
R-R' = vector from the center of Antenna ¥ to tte specified
near—-field point,
a =

azimuth rotation angle betwuen Antenns A snd Antenna B, and

= glevation roration angle between Antenna A and Antenna B.

The complex voltage response V(R,B8,a) of Aatenaa B when

iliuminated by Antenna A can be writtem as

VR, 8 , ) = fib( (R-R*) |8 ,a )} - B (&' ds’ (3-10)

Sl

- -
where Co is a frequency dependent faccor and where E® and EY denote the

complex near-rield electric fields of Antenna A and Antenna 3,
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Figure >-15. Sketch depicting two arbitrarily oriented ear-field
ant.eunas and geometric parameters.
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Figure 3-16. Sketch depicting the azimuth rotation angle a and the

.
. elevation rotation angle 8 associated with Mtenna B
| of Pigure 2.

89




L ‘1

respectively. The surface integral in Equation (3~10) is integrated over
the surfice of the sphere of radius R',

The vertically-polarized and horizontally polarized compomencs of the
electric field of Antenna A on the sphere of racius R' centered at Anteana

A may be coaputed as

22 R', 8, ¢ = I aAVh n{2?) (xr* JL__(cos 6')e ™ ' (3-11)

for vertical pelarization and

B2, 00, 90 = 1 AR (DL _(cos 67)e7d (3-12)

for horizontal polarization. The symbol h|(12)

denotes the spherical Hankel
function «f the second kind and order mn, and the symbol Lo derotes the
associated Legendre polynomial of the first kind of order n and degree m.

The coefficients Amv and A h are readily computed if E: is known on any

spherical surface. It is assumed that the vertically-polarized and
horizontally-polarized far—-field patterns are krown, and comsequently, the
coefficients zan be computed from them. Equations analogeus to Equatiors
(3-11' and (3-12) can he written fer the vertically-polarized and
horizontally-polarized fiel.'. of Antenna B, and a coordinate transformation
can be applied to refer the fields of Antenna B to the Antenna coordinates
ar vice versa.

The power coupled into Antenna B due to illumination by Antenna A is
then

- - _x -
PR, 8,0 =|LgleZ vIar Apg *Bu'm' ina(R,B,0) |2 (3-13)
n'm
- v o4 h 7 s v ; h - . . - =
where A= A 6 + . ¢ ani B= B 8 + B ¢ . The coefficients A and B

and the integral I(R,B ,a) are computed as

27
Ara ’:[ f (3¢ Ln.(cose)e'j‘¢ sinfdédé , (3-14)
O o]
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o
"
. =b -jm'¢
Bc'n' - f F (S,Q)Lm,n.(cosﬁ)e 3 ain6ddd4, and (3~15)
o o
1. (R,B,a) = R’ /’ Pa{KR' Jhp(K|[R-R® | Yipg 088" din iyt (cos(8'-2))
; n'w' o "o
f emjm(¢’=alsials' )an'dy" . (3-16)
i i
The quantities F2(8,4) and l'-“b((',,fv) are the total vectorial angular
spe trums of Antennas A and B, rvespectively, These total spectrums are
just the sum of the vectorial sp=ctrums ?: ot -I"‘; for each propagating mode
\ of the antenna feed systom. Hence,
2
' =a . za
Fbl,¢ = fu 2, By (¢,9) and (3-17) 2
' i
: ' ~b P -
Fo(8,¢4) = zu bp Fu(6,¢) (3-18)
vhere 8, and b denote complex ex:itation coefficients for the propagating
Q waveguide modes.
The statistical average power is obtained in the straightforward but f

tedious procedure described previously. The resulting exzpression is

-k - -X
_ ] ~ = -
znzmzu,zm.zpzqu.zq. <Aml qu><nn,m.sp,q., I (R,B,u)lpq (R,8,a)
n'ﬂ' plq!
(3-19)

The joint statistical moment <‘A.m : Z*pq> is computed as




Faa o

sk

118

2n ®w 2n W .
- * - —_—k
<Anm- qu> = ffff(rﬂ(e,‘p)- (e, s> Lmn(cosﬂ)qu(case')
9 0 v 0 *

(3-20)

x expli(p-n)¢] sin(0) sinf6') d6' d¢'ededs

and <-ﬁn'u' . B*p‘q'> is computed stuilarly. The joint statistical
moment <F8( ) - F2 (& ,¢')> i3 obtained from a knowledge of :he

waveguide modal zoefficient excitation statistics, to wits:
- = %
<Fa(0,0)-F2 (8',6')> =

* =32 —a* ] '
ZE, e a >F (0 (07,0")
{3-21)

and similarly ror <<Fb(® ,¢)'§b*(9',¢')> . .

Finally, the joint statistical mcments <au a:,> and <bu b:,>
u' must be specified from theory or experiment. The determimistic
analysis is, of course, recovered from the statistical equations in the
limit of vanishing covariances CM'u for all indirzea y and u'.

The rigorour spherical wave spectrim anslysis is considerably more
invoived than the plane wave spectrum analysis. However, the spherical
vave spectrum technique has the very desirable attribule of being
applicable to arbitrary arizngements and orientations of a near~field
antenna pair. Nonettele.s, computer run times may be excessive for
routine use of the SWS technique ir its present "rigorous" iform,
However, it appears that a substantial reduction in the computer rum
time may be achieved withou: serivusly degrading the accuracy of the
SWS analysis by deriving approximate ieries represantations of the

integrals via either the residue calculus or replacemant of the full

spherical wave series by aaymptotic series. Moreover, it appears that




further theoretical dnd numerical studies of the SW5 tochnique would
expedite the development of valid PWS equations for analyzing arbitrary
aantenna/obstacle/anteana geometries. Accordingly, the SWS techcique is
considered to be a pntentially valuable area for candidate further

study in future investigations.

D. GID Analysis

Relatively simple equations are presented in R~ference 30 for
estimating the coupling of power between cosited reflcctor antennas.
The equations were derived with aid of the GTD analysis. They are
applicable to situations whereby the “mainbesms” of the two antennas
arz not directed toward each other. That 1is, the equations are
applicabls to "sidelohe-to-sidelobe"” coupling situations. They are not
anplicable to "mainbesm~to-mainbeam” or "mainbeam~to-sidelobe" coupling
situations. Thus, the STD equstions complement the current PWS mathod
presented previously which is particularly well suited for the
painbeam-to~mainbeam and mainbeam~to-sidelobe coupling si.uatioms. It
shouil be noted that the equations lack the rigor associated with tae
PWS ard SWS analyges and that it is difficult to judge the absolute
accuracy of the equatioms. Nevertheless, the equations are poteatially
useful for "rough" enginvering estimates of sidelobe-to-sidelobe
antenns coupling.

The simplified GTD coupling analysis can be illustrated by
considering tae coplasar arraagemeant of two circular—-aperture horn—fed
paraboloidal reflector anteanes stowm in Figure 3-17. The various

symbols shcwn on the figure are defined as

d| = aperture liameter of Antemna 1,
d; = aperture diameter of Antenna 2,
21 = length of OP,
29 = length of 0Qy,
£3 = length of 0Qg,
14 = length of Q;P,
ig = length of QyP,

2¢g = separgtion between anteuna centers.
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Figure 3-17. Sketch depicting the linear distances and the
angles used in the GTD antenna coupling aaalysis.
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The angles @;, By, &, & & & open positive as shown.

Two different types of coupling are depicted in Figure 3-17.
These are (1) direct coupling of the feed horns along OF, (2) and
single diffraction coupling along 0Q}-Q;P and also along 0G2~Q2P-
Thus, there are three contributions to the total coupling between the
antennas.

The author of Reference 24 calculates the coupling coefficient for
each type of coupling when only that particular coupling mechanism
exists. The coupling coefficient is defined as the ratic of the
received power to the transmitted power. The total coupling
coefficient  when both types of coupling exist (implying three

contributions as noted in the preceeding paragraph) is computed as

n o= néndng + Zvnlnz COS(EIZ) (3-22)
+ 2}n2n3 cos(gza) + 2anﬂ3 c03(§13)

where
Ny = power coupling coefficient for direct ag'coupling,
Na = power coupling coefficient for single diffraction
aai-éig_coupling,
nq r power coupling coefficient for single diffraction

— —

0Q2-Q2P coupling.

and where &9, £73, and £;3 are the relative phase angles between the
electric fields arriving at P via paths indicated by the subscripts.
The powver coupling coefficients nj, ny, and 73 preseated in

Reference 24 wosy be written in our notation as

12

22¢.G [
n =
(4= Ll)z

2
Hl(ul) °H2(02) ] (3-23)
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167 d12316 ;

where
A = the wavelength in free space,

G = the peak gain of feed horn 1, and
G = the peak gain of feed horn 2.

H; and H, in Equation (3-23) are the vectorial horn patterns with
azimathal and elevation vectorial components ; and 5 . The vector §i
and the vectorial pattern iz appearing in Equation (3-24) are defined
with respect to the edge diffraction point coordinate system erected at
Q; with 51 tangent to the edge and 51 perpendicular to the edge.
Similarly, Ez and -ﬁz appearing in Equation 3-25 are defined with
respect to the edge diffraction point coordlnage system erected at Q2
with ¢, tangeﬂt to the edge and 0 perpendicular to the edge.

$1 and Sz are then written as

S10%,0s) = H, (&, E, (oi,os) o) + Ho (8,) Fy, (05,05) 0y

o1 !
(3-26)

and
S9(8;,0g) = Ho s F (01, s) ¢2 qubJQi,Gs) 0, (3-27)

where the notarion Hy,, indicates the component of H] with respect to
the coordinate system ($1,0,), etc. The angtes of incidence 0; and the

angls of scatter 5 appearing in the edge diffraction function F are
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ansociated with au edge point are, of course, specified with respect to

the particular edge point coordinates shown in Figure 3-18. F4;(8,95)

auc Fg,(9;,8,) are computed as

>} 2
F1(9;,0) cos(es) - cos(ei} (3-26)
0 9
sin[—z'-i-]cosiys!
Fel(aiyea) - (3-27)

cos(ea) - cos(el) *

where it is assumed that the scattering angle of incerest is away from
the shadow boundary defined by 8, = 28;, This restriction can be
eliminated via the use of wmcdified edge diffraction formulas as
rresected in References [25,261]. However, (3-26) and (3-27) are
satisfactory for cur purposes.

This simplified version of the very powerful GTD analvsis
technique can be -sed to make rapid computer estimates of out-of~band as
well as in-ba.d antenna coupling by specifying the feed norn patterns
cf the two zntennas over the frequency intervals of interest. It is
¢gain noted that the equations are applicable only te sidelnbo-to-
sidelobe coupling situations. Stochastic equations based on the
foregoing GTD cquations could be derived expressed in terms or the mode
excitation coefficients. However, the PWS and/or the SWS te:hniquss are
envisioned as the wmore promising methods for stochastic coupliag
analysis for arbitrary situations and, consequently, the GTD anz.ysis

was net pursued further.
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SECTIOR 1V
SYSTEM DEVICE EFFECTS

_ A. Introduction
The two main objectives for this task were (1) to develop a method
for analyzing the antenna pattern effects of higher order modes
.. generated and/or propagated by common feed system devices and (2) to
assess the feasibility of deducing the mode excitations for a radiating
feed system from analysis of measured out—of-band pattern data. The
first objective has been achieved via the theory and equations
developed during the course of the research work on Task 1 and Task 1I
presented in Sections II and I1I, respectively., The results of the
research work pertezining to the second objective are presented and
discussed in subsection B of this sectioa.
The timely completion of the required research work for this task
permitted a brief digression into another impartant aspect of the out-

of-band response of system devices. In particular, equations were

| .
Ao, i . N
S g B e T et e i L3

sought to describe the influence of particular waveguide devices on the
: excitation and subsequent propagation of out-of-band waveguide modes.
' Three waveguide devices were considered in this exploratory study,
. namely (1) coax-to-waveguide adapters, (2) vadial bends, smd (3)
ferrite phase shifters. Program counstraints precluded a detailed
quantitative analysis of all three kinds of devices. Accordingly, the
research efforts were councentrsted wmainly on the theoretical &nd
numerical analysis of a coax—to-waveguide adapter. 7The results of the

exploratory study are summarized in subsection C.

B. Computation of Mode Coefficients From Measured Out-cf-Band
Pattern Data

The wode coefficients for the propagating wodes of a radiating
feed system can he determined from a knowledge of the aperture
tangential electric fields. The aperture fields can be determiumed to
good approximation from the complex far-field electric field patterns
of the feed system.

The hypothetical experimental arrangement consisting of an

arbitrary feed systea terminating in a large metallic “ground plane" is
y 8 g
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chown in Figure 4-1. The feed system is assumed to consist of (1) an
input eection which, for example, might be a :oax-~to-waveguide adapter
or a powzr coupling iris, (2) passive and/or active devices, such as a
radial bend and a phase shifter, and (3) the radiative elemeat, which
is an unflared straight waveguide section. Note that the guide axis is
along the X coordinate ané that the y and z coordinates are the
transverse coordinates, This orientation of cooidinate axes is a
convenient one for the problem at hand.

A measurement is performed to determine the far-field complex
v .torial electric field in the forward hemisphere. The measurement is
probably most efficiently accomplished via the planar near-field
measurement technique. The far-field electric field is then accurately
computed via established FFT processing of the near-field data ([25].

The transverse electric fields E(y,z) in the aperture of the

radiating system may be computed accurately as
E(y,2) = 7, I Epq expl-jlkypq ¥ + kgq2)1 (4~1)

where che cuefficient qu is the complex far-field electric field in

the direction defined by (ky = kypq: kg = kgq) where

kypg = ko 8in(8g)sin{qy), (4~2)
kzq = kocos(6g), and (4-3)
kg ® 27/ ) (4-4)

vhere A is the free space wavelength.

The mode coefficients are determined by solving the simultaneous
equations obtained from the continuity of the taangential compoaents of
the £ and B fields at the aperture. The appropriate equations at the

aperture (x*() may be written ss

- =+ . == -
Loa ¥ (nz)se i b T (y2) =Ly L4 Epq ¥Ppq (y,z)h::;t;
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¢ (y,z) =% I ? « B
Y P 9 pq Pq

Y (y,z). (4-6)
oq )
where,
a = the complex excitation coefficient for the
allowed P waveguide mode,
b‘( = the complex reflection coefficient for the
kth waseguide mode,
+)

¥ (y,z)= the transverse-to—x vectorial waveguide
electric field function for propagation
in the (*) x-direction,

q;q(y,z)' exp [ -j (kypq y + kgq z) 1, {4-7)

T = the effective wave admittance dyadic for
PQ  the radisted fields, Iy, = ko sin(eq)
Pa q
cos $p/wp , and

T = the wave admittance dyadic for the waveguide
field functions.

The waveguide admittance dyadic !EI?'c is just

- ryy 0
T | 4
K

tu

0 -I' £ =
K

-~

where [I‘K - kaw} for ‘1’!-:0-; wodes and II'K = "":IBK] for TM-to—x

modes, The effective wave almittance dyadic I",,q for the radiated
fields is
r - G
PeyYy
T = -
Pq _ (4-9)
0 -rpq zz

where Tpq = [Koein(8g)cos(dp) 1wu




The waveguide electric field functione are assumed to be arranged
: in ascending order of cut-off frequeacy. The electric ficlds for the
. . ‘ TE and M modes that have the same cutoff frequency require special
. handling in order to preserve a desirable orthogonality prorerty of the

wode fields. In particular, if 6: (y,z) is - TE mode field with cut-

‘13 off wavelength A, and 6: (y,z) is the TM mode field with rhe same cut-
p off wavelength, the waveguide field functions iK(y,Z) and ?riz’z)are
:j teken to be
+ +
\i-K(ytz) = UK(Ynz)’ and (4-10)
if _t + +
sV e g O (y.2) + 0 -113
Ven 2 = al (y.2) +V (y,2), (&-11:
5 ;‘.
vﬁﬁ where
;
? ’ o p + 3
~ jﬁvn(y,Z)l * V (y,z)dydz
e, =- (6-12)

K _t x ¥
_[[[U‘(y.z)l . UK(y.z)dydz

a_. is set equal to zer> for any pair of modes that have different cut-
off waveleagths. The integrals are evaluated over the guide cross
section .

E The z-polarized and y-polarized electric fields for the TE

waveguide modes traveling in the positive x—direction are

+ Jou ("
[Ut(y,Z)]z =

sta (7 (v + P

+ (mn2 ,  ma?2
(EH° + EH%
‘ i cos[%g'(z + g)l exp (;jBKx} and (4-13)
. + jou(ED)
(v(y,z;}_ =% b cos [PE (y + B)].
x y (@5% + AL s 2
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sin [%f (z + %)] exp !tJSKx}, (4-14)

vhere

8: \/ki - (9;7-")2 - (—“l)2 , and

b (4-15)

vhere the n and m indices are chosen based on the mode ordering scheme
previously dicussed. Similarly, the z-polarized and y-polarized
electric fields for the TM mcdes are

+ 18, ar . . a
v ly,2)], =~ 3 sin ['"a— (y + *2-)]
[ELH? + @H%)
cos [% {(z + -;—)} exp [;jatx) and (4-16)
+ 18 G5
V.(r,2)], = —5% 2b —— cos [5:!l (y + -;-)]
(EDH? « EHY)
gin l!})l (z + %)] exp [tjs‘x] (4-1T7)

It should be noted here thst mode sets other than the mode sets TE and
T™ to the longitudinal axis can be employed. However, this is

frequently a convenient set of modes and serves to illustrate the basic

theory and equations.
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The solution for tue wode coefficients is readily achieved by (1)
scalarly multiplying Equation (4-6) by (T‘:)* and integrariug both
sidas of the equation over the guide cross section; (2) scalarly
multiplying Equation {(4-5) by (YK':' )*-?‘ and integrating both sides
of the equation over the guide cross section, making use of the
orthogonality of the wod: fieldas to retain only the« =« terms, and
colving the simultanecus equations in the unknown a‘ and b’< for 2 .

The solution for a so obtained is

t 2 T+ ([T +T )%
a = P9 Ppgx L3 Pq Ba {(4-18)
K a2 b
2 2
- * =

2 f [‘l‘:(y,z)] o . ?:(y,z)dzdy
-a b
2 2

where

a b
z 2
T st * (4-19)
T =
par f f ¢ . F (7,2)1 ey
-a -b
2 2

is the complex conjugate of the wvectorial far-field electric field
pattern radiatzc by the xth waveguide mode. All of the quantities on
the right-hand side of Equations (4-18) and (4-19) are kpown from

experiment or theory and, hence, the coefficients a_ may be computed,

C. Sumcary of Cut-of-Band Waveguide Device Characteristics

The emphssis in this brief study was on obttaining a qualitative
understacding of the basic out-of-band mode excitatiouns and propagation
characteristics of (1) a coax-to-waveguide acapter, (2) radial bends,
and (3) ferrite phase shifter. A detailed cuantitative study of each
device wac outside the scope of these exploratory investigarions due to
the complexity of the sclutions obtained for multimoding waveguides.
Accordingly, attention was focused primarily om the coax-to-waveguide
adapter, The key analytical results for the radial bends and the

ferrite phase shifter are first briefly summarized in the following
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paragraphs., The salient analytical numerical results for the coax-to-
weveguide adapter are then presented and discussed.

1. Waveguide Radial Bends

The propagation of electromagnetic emergy through radisi "E-
plane” sud "H-plane" waveguide bends huz brar studied by a large number
of authors during the last 45 years. A jartial list of references is
included in Section VII as References 20 through 34, Out-of-band as
vell as in-band propagat.on has heen addressed. Rigorous 3olutions for
the electric fields ir becds are presented in References 26, 31, 32,
and 33 in terms of infinite series of Bessel functions. The wmatrix
solution due to Rice [ 30] is also capable of providing rigorous
results, Rigorous solutions for the generstion of higher order modes
2t the junction of straight snd curved portions of o waveguide run have
zlsc been aerived [32). The rigorous solutiors are generaily valid for
"sharp” bends as well as for “"gradual” bends. A shary bend is defined
herein as omne for which AR/R < 1 and a gradual bend is ouna for which
AR/R << 1, where R is the bend radius and AKX is the thickneas of the
bend alow. %, as per Figure 4-2,

The approximate analysis of a gradual H-plsne band by Jouget
27,22} furnishes valuable physical iasight as well as useful
approximate equations for the intermodal coupling coefficients at the
juaction of the straight and curved guides, The corresponding analysis
for the round waveguides sre also presented by Jouget in a sepa-ate
paper [ 29]. Expressions for the mode cutoff frequencies and the mode
phase velocities in the curved porticns of the wav:.guide are also
derived. The corresponding amalysis for an E-plane bend is presented
to second order by Lewin [ 34]. Good engineering approximations for the
mcde conversion ccefficients st the entrance and/or exit junctions are
possible even “or mod2rately sha:p tends where AR/R < €.},

2. Ferrite Phase Shifter

The nain difficulty in the analysis of 3 waveguide containing
4 ferrite phave shifter is in obtaining a vaiid representation for the
electric field or the magnetic field sa the portion of the guide
containing the ferrite slab. Once these characteristic fields are

obtained. the usual procedute of requiring continmity of the fields at

!
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the entrance and exit Zaces of the slab can be invoked. This leads, ot
course, to a set of simultaneous equations that are readily solved to
provide reflection and transmission coefficieants as functions of the
phase shifter control setting for a specified incident wmode. For
example, the fields for a rectangular guide countaining a ferrite slab
extending fully acroes one dimension of the guide, as per Figure 4-3,
can be solved exactly. However, the exact sclution for slab geometyy
shown in Figure 4-4 is too complex to be useful and, hence, approximate
techniques are sought.

The ferrite phase ghifter is generally a lossy, anisotropic medium
and, consequently, the application of perturbational or variational
techniques is more complex than for typical waveguide problems [ 11,35].
Nonetheless, the application of variational techniques to the ferrite
phase shifter problem is potentially very wuseful. The equations
presented by Moshen [36] appear to be particularly well-suited for this
problem. Moshen derives a stationary quantity P that is valid for a
lossy, anisotropic, inhomogeneous wedium which, for & source free
region, is

=[Q F R + [T e
F=[vx E.R}s (¥ x H,E]s

+ Ju ([B,H]_ - [D,E]) (4-20)

+ 1E,H]

where quantities of the form [A,B); and [i,ilc denote the "inmner

products”

Ed

8" as and (4-21)

[A,B]_ = ff
3
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respectively. The symbols E, H, and B denote the electric field
vector, the magnetic field intensity vector, and the magnetic field

vector, cansecutively. The inner product | K,El, is evaluated over the
gBuide cross sec:iion. The inner product {E.i]c is evalusted around the
periphery of the guide cross section, The suverscript symbol +
lenctes the adjoint of the field quantity to which it is appended.

A variational expression for the propagation constant in the
farrite phare shifter can be obtained from Equation (4-207. Tue trial
field E(x,y,z) may be conveniently chosen as the superposition of mode

fields ?x(x,y,z) for the empty waveguide, to wit:
E(x,y,z) = I C ¥ (xy,2), (4-23)

The :rial H and B vectors are obtained from Equation (4-23) via the
Maxwell curl relation and the constitutive relation B = ii' 8 y where
u is the permeability tensor [34] for the ferrvite slab. The expansion
coefficients C, which extremize the propagstion coefficient are found
by numerically solving the set of simultaneous equations obtained from
the variational equations. Thus, the electric field E given by
Equation (4-23) is determined and can thence be employed in the
analygsis and computarion of reflection and transmission coefficients
for the ferrite section.

3. Study ot the Coax~to-Waveguide Adapter Device

The goal of thia study is to obtain a qualitative
understanding of the higher order mode excitation and propagation
characteristics of the coax-to-waveguide adapter. The results of this
study provide useful insight into the basic out-of-band characteristics
of a coax-to-waveguide adapter.

The solution for the wode excitation coefficients for the coax-to-
waveguide adapter shown in Figure 4-5 can be obtained with the aid of
equations given in Collin [34]. Note that y and x are transverse

coordinates uad the longitudinal axis of the guide is along z. In

particular, the dyadic Green function E?x',y',z'l:,y,z) derived by
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Collin for an infinitesimal electric dipoie, located at (x',y',z') in
a rectangular waveguide is anplicable to both in-band and out-of-band
waveguides. The magnetic vector potential 3 = ;y§ produced by an
assumed current density J = ; Josin [ko(d-y')] on the probe and is
derived by integrating the procduct G+J along the probe surface S,, to

wits

aAlx,y,z) = -uoff E(x',y',z'/x,y,z) « J(y')da® (4-24)
S

o
Expressions for E(x,y,z) and B(x,y,z) are then readily obtained via the

well known operations

E(x,y,2) = -ju Alx,y,z) + Y(V-A) (4-25)
Juwe u
oo
and
B(x,y,z) = L @) (4-26)
o

The electric field E(x,y,z) obtained from BEquation (4-25) can be

written as an expansion.

E(x,y,z) = DI bnm ).(nn(x,y,z} (4-27)

where m = 0,1,2,3,4,.... and 0 = odd positive integer n = 1,3,5,7, ....,
the selection of the vaiues of index n being imposad by the requirement
that the vector potential K(x,y,z)# 0. The expansion functions 5(',_ are
the 'm,f. wvaveguide wmode functions which have no component of H along

the transverse y directioan. {Thus, one «c¢an anticipate that

longitudinal power flow is asscciated only with the y-polarized

electric fields of the TMJ, modes since EyHl, = 0 }. The coefficients

b,y are




exp (-3 Bmz] - expl-j B“(z+£) ]

bm i B“

d
) ax EO[cos(kod) - cos(mn F”

r sin|—JJ €
2l e wy, 2 2 om
) -t
)

(4-28)
where €5 = 1 for m = 0 i
and tom * 2 otherwise.

The vecstor function in.(x,y,z) is expressed in terms of its compoments

as
hx jwe ab ab a *

- sin By + D))z (4-29)

2y
- o 1 =X, 2
Yomyy = -y T et g GO

» sin [%:—' ¢ +%)] cos [&-"b1 (y +32’-)l}9,

(4-30)
Xnmez = {LED18 ] sin [2F (x + D] -
* cos {%‘- (y + !2”)]};. (4-31)
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The electric field E(x,y,z) can be expressed with the aid of Equation

(4-25) as
3
1 a2~ %A . ?a .
E(x,y,=z) Joe {axay x+——y-2 y + 323y z } (4-32)
: 3y 3
¥
and H(x,y,z) via Equation (4-26) as
* ; L A . 3 . i
1 B(x,y,z) = ? (_—y-ax z--—laz =) (4-33) ;
3

-

The average power density Sy transported slong the z direction is

' JA
1 ¥ * -
Re [--uo E (31: 3] (4-34)

ol

N

N

.

N

B
LRI

Ml S g
L,

vhere S is the pointing vector defined as

§ = % Re(Ex@™) (4-35)

#* the complex conjugate magnetic field vector and z the unit vector in
the direction of propagation. Utilizing Bquations (4~24 to 4-36), a
closed furm expression for the power P,y propagated ia a coax-to-
waveguide adapter can be derived by integrating Equation (4-35) over

the guide cross section to obtain

ala AL o M
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2 2 2 2 2 [coskod ~ cosmw (-t;)]2

1 0 aw
P = i Re — b ==
nm 2 Re ab Jo" n Zm Eam sin” [ z ] ko [(mw)Z :2]2

b o

y

lexp(-18_2) - exp {-38__(2+1)] * lexp(~18_2) - exp (-38_(z+0)}]"

ig
[ s 1 mn, 2
* {juw + J::—E—‘ (T) Po. (4-36)
o0

where Re means "'real part of" and where all other symbols have been
defined previously. The total power propagating along the waveguide is
partitioned among the differant possible ‘D‘L modes that have n > 0 for
a particular operating frequency. Calculations of the pover
distribution among the different higher order modes were wumade for
standard S~band coax-to-waveguide adapters for frequencies ranging from
3.0 to 10.0 GHz. The values of the various physical parameters of the

adapter and waveguide for the numerical study are as follows:

a= 7,112 cm
b= 3,302 cm
d= 1.9 cm
= 3.5 ca
L= 2.4 cm

The caiculations were performed on the assumption of the total power
radiated to be equal to 1.0 watt corresponding to a dipole resistance R
= 500 ohms -and a current J, = 45 milliamps.

It should be noted again that the power flow down the guide is
associated entirely with the y-polarized component of the electric
field of the excited modes. The ;-conpouent of the alectric field does
not contribute to the longitudinal power flow since the y componet of
the magnetic field is zero for the TMy, modes.
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Results of the computer calculations are tabulated for selectad
frequencies in Table 4~1. In particular, the modal power flow for each
excited TMzm modes is tabulated as the percentage of the total power
flowing in all of the excited modes”for the in-band frequency of 3.V GHz
and for the out-of-band frequencies of 6.0 GHz, 7.5 GHz, 9.0 GHz, 9.5
GHz, and 10.0 GHz. Inspection of the tabulated data shows how the total
power flow is partitioned among the excited modes for each frequency.
The dispersive character of the waveguide over the out-of-band frequency
range from 6.0 GHz to 10.0 GHz is clearly evident in the data. The
frequency sensitivity of the modal power flow distributions for the
frequencies of 6.0 GHz, 7.5 GHz, 9.0 GHz, and 9.5 GHz is partially due
to the fact that the total power flow is partitioned among 2 modes, 3
modes, 4 modes and 5 modes, consecutively. However, consideraple
frequency sensitivity is also evidenced for the out-of-band frequencies
of 9.5 GHz and 10.0 GHz, both of which have the total power flow
distributed among the same 5 TMKQ modes .

It should be noted that the dnalysis of a coax-to-waveguide
adapter having a non-filamentary current probe can be obtained via the
equations presented in Reference 35 and herein. The Green function for
empty rectangular waveguide presented in Chapter 7 of Reference 35 must
be numerically integrated over the surface of the current probe that is

being modeled. It would be particularly beneficial to analyze the out-

" of-band behavior of a coax-to-waveguide adapter having the shape of an

elongated '"teardrop" found in many commercial adapters. Adapters which
have a concentric dielectric sleeve enclosing the current probe require
the use of a more complicated Green funmction. It would also be of
considerable practical value to numerically analyze the out-of-band

characteristics of the dielectrically-sleeved adapters.
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TABLE 4-1
MODAL POWER FLOW FCR THE T,y MODES FOR THE .
INDICATED FREQUENCIES FOR WR-284 WAVEGUIDE
EXCIiED BY AN IDEALIZED COAX-TO-WAVEGUIDE ADAPTER
BAVING A FILAMENTARY CURRERT PROBE®
Frequency rug; Modes Modal Power Flow
: (GHz) (n,m indices) (2 of Total)

3.0 10 100.0
6.0 10 6.96
1i 93.04
7.5 10 11.99
1t 7.00
30 81.01

b .
9.0 10 47.05
i 11 13.62
; 30 0.45
' 31 38.88
’ 3.5 10 47.83
11 17.86
30 10.64
12 17.27
10.0 10 32.86
o 11 11.51
30 20.33
31 0.00
12 35.30

*TH%, waveguide wmodes are defined with respect to the coordinate
system depicted in Figure &4-5.
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SECTION V
SITE EFFECTS

A. Introduction

It is well known that the performgnce of an antenna can be
significantly degraded due to scattering of electromagnetic energy from
metallic or dielectric structures located within the radiating near-
field of the antenna. Several techniques are available for analyzing
the effects of near-field obstacles for a specified operating
frequency. Prominent among these techniques are aperture integration,
the Geometrical Theory of Diffraction (GTD), and the Plane Wave
Spectrum Scattering (PWSS) analysis. Although any of these techniques
could be used for out-of-band frequency analysis, they have generally
been anplied to the analysis of in-band effects at a few selected
frequencies of interest.

The analysis of the distortion of the envelope of a narrow time
pulse requires a knowledge of the frequency domain antenna/obstacle
response over a frequency inteval exceeding the bandwidth of the pulse.
Alternatively, a direct time domain analysis can be formulated and
applied to near-field scattering problems, as per Reference[37 ].
However, a frequency domain analysis appears to be more flexible and
appropriate for the wide variety of antenna/scattering situations that
are encountered at Army directive antenna installations. Moreover,
experience has shown that the PWSS method of antenna/obstacle analysis
is particularly well suited for analyzing near-field obstacle effects.
Accordingly, the frequency domain approach employing the PWSS
scattering technique has been used to study the effects of near-field
obstacles on the wideband CW and pulsed response of directive antennas
for both in-band and out-of-band frequencies. The basic theory and
equations are presented and discussed in subsection B, and the results
of a numerical study of wideband site effects are summarized in

subgection C.

B. PWSS Formulation

The monochromatic PWSS analysis is readily adapted to analyze

near-field obstacle effects for wideband CW or pulsed systems. The

119




theory and equations for the deterministic monochromatic PWSS are
outlined first.

1. Plane Wave Spectrum Analysis Concept

The basic theory of the Plane Wave Spectrum Scattering Matrix
analysis is presented in Referenc:s 22 and 38 . A brief; somewhat
heuristic synopsis is presented here. Figure S~1 illustrates the basic
concept and the antenns/obstacle geometry. Conceptually, the aatenna
Plane Wave Spectrum {PWS) referred to the antenna aperture propagates
in the near-field and ie incideat upon an obstacle. Each component
plane wave im the antenna spectrus excites a complete spectrum of
obstacle scattered plane waves., The total scattered spectrum is thus
the superposition of the scattered plane wave spectra due to the
incident antenna spectrum.

If the antenna aperture is located in the x = () plsne, the antennsa

PWS X(ky,kz) can be expressed as,

_ 1 “re. 3C y4i 2) |
A{,ky,kz) = W /f Et(D.y,z) e d)"dz, (5-1)

wvhere ky = ¥, sind cosg¢, ke = kg sing sin¢, k; = k, cosd, k, =
27/d, Ep(0,y,z) = yEy(0,y,2) + £E,(0,y,z) is the electric field
transverse to x and an e*J¥t time dependence is suppreased.

Equation (5-1) exprecses the transverse asntenna spectrum K(ky,kz)
as the Fourier transformation of the transverse aperture electric field
Ec' Via the inverse transformation the transvers: tc x electric field

in the charge-free region x > 0 can be expressed as [11,35 ]

- o
- - - -4k . T
Et(x.y.z) ffA(k,_.k‘) . dkydk:. (5-2)
- )

where k = &ky + Fky + £k, and T = ir = &x + §y + iz,
In the far-field where x >> 0, an asymptotic expression can be
derived by the methud of stzepest Jdescent as,
-jkor

= - e
Et(rtei’) - jz"kxA(kyookzo) ';. ' (5~3)

129




‘sedTrur Bujaeijear ayy
Jeuumjue ay3 jJo wvaBeyg -y-¢ 2andiag

VNNI LNV

N

U3 peen wijdeds enwa suwid Ayl puw L1jswosd atomieqo

(W*n)y
SMd VNNIINY

- S

‘ N‘- hxvﬂm
SMd Q34311v)S

©-
O~

( ,_;,.. v
m;a ' N3dIONI

10visda0

~.. x/u\«

S g




vhere the wavenumbers ky, and kpo are the values of ky and k; at the
saddle point of the integral of Eguation (5-2).

The far-zone scattered figld due to a single component of the
plane wave spectrum incident on the obstacle shown in Figure $-1 can be

expressed as

= 7 1t .4, . =1.1 4

Bt 00 = @ik k) KK (5-4)
where E:_(k}.,l-,) = K(ky,kz) e-jki "B R denotes the obstacle locationm
and ,d is the piane wave to spherical wave scattering dyad for the
obstacle with phase r:ference at the obstacle location. The incident

g N .
wavenumber k' is given by

i

il - x 2 . b2 - aly2 ez -
k x /ko (ky) (k:) +yk’+zk . (5-5)

and the term c~Jk' * B ghifts the antenna snectrum to the obstacle
reference center located at R,

For our purpose, it is conveanient to express Equation (5-4) as
1.1

20 3 4 .3 .
o) - s(x,.k:,x,.x:) Ko (5-6)

vhere bty using the asymptotic relation of Equation (5-3)

. Al i L E'e 7 ad (5-7)
S kyiknk) = i d &) .

is the plane wave spectrum scattering dyad that specifies the obstacle
scattered plere wave spectrum for the case of excitation by an incideat
planz wave traveling in the direction defined by (k%,k%).

The total obstacle scattered plane wave spectrum can now be
expressed as a superposition of the scattered spectra due to each

component of the iancident antenna spectrum as,
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A" (k) = f.f B0k, k) - KOG,k dko dky, (5-8)
ko1 k

where kyy and k,j are the wavenumber limits of the incident spectruam.
In practice, it is more convenient to evaluate Equation (5-8) in
the angle (g,0) space since most computer programs for scattering

analysis employ (8,4¢) coordinates. This transformation results ia,

2(0,9) = -k ff SCe.ei0t.0h) - Ace',eh (5-9)

"’L
-mzsi cos¢ ea d¢ .

where 8 and ¢ are the angular limits on the incident spectrum space.
It is also convenient to express the scattering dyad in terms of

spherical coordinants as

_ - *s,, *s,,
S(e.s:87,00) = | B ’ (5-10)
] o4 Sg, 08 S,,

where S¢e is the scattering function for the @-polarized component of
the scattered field for a ©-polarized incident plane wave and so
forth. It is apparent that this form fits nicely with scattering
analyses expressed in terms of tl'e conventional TE and ™ incident
plane wave modes, and the scattered spectra for the obstacle are
readily expressed in terms of orthogonal (8,%) components [ 11 }.

The resulting total spectrum is given by the sum of the antemna

and scattered spectra in the (98,¢) space as,




mm(e.o) - eIA (6.¢)+A (6,0)] + #IA (e.o)ﬂ (8,9)], (511

and the compomnite far-zone pattern can be readily obtained from the

total spectrum.

The spectrum ;(ky.iz) which is derived wvis he Fourier :
transformation of the transverse to x electric field E(O,y,z) is termed
the "transverse vectorial spectrum"™{2l ]. Since far-zone radiation i
patterns are conventionally expressed in terms of the angular (8, %) i
coordinates, and it is sometimes convenient to evaluates the scattering
matrix for (8,4) coordinates, it is often necessary to convert the
transverse vectorial spectrum expressed in the (x,y,z} cartesian
coordinates to thz (8,4} angular coordinates, To accomplish this ;

transformation, we define after Keras[21 }, the orthogonmal unit vectors

’ (5-12) A

and

ﬁz- xxl.l. (5-13)

¢ Note that the unit wvectors il and Ko are respectively ‘“radial" and ;
“tangential' unit vectors associated with polar ccordinates in the (y,z)
plane. The individual plane wave componcnts of the spectrum propagate
in the plane defined by ﬁl and the x axis. Thus an electric field
aligned with X; is parallel to the plane of incidence (Eqy or
Transverse Magaetic) and an electric field aligned with iz is
perpendicular to the plane of incidence (Eqg or Transverse Electric).

The scalsr spectral demsity functions corresponding to the basis

vectours il and ﬁz for the outgoing vectorial spectrum cre defired as \

b(1,K) = L
b(2,X) = L,

:€5 {5-14) o
A(K)
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where K= Yky + zkg

Finally, the complete vectorial spectrum a(K) which includes all
of the cartesian (x,y,z) components of the outgoing spectrum is given
by the relation

a®) = b(LR [ Ky F x =) +b(2,0) Ky (5-15)
X

where

The completz cartesian based vectorial spectrum a(K) can then be

converted to the angular (r,%,?) basis vectors via the relations

x = r 8ind cosd + B cos¢ co3p - ¢ eing ,
y = r sing 8in¢ + 6 cosp sing + & cos¢ , and (5-1€)
z=rcosd - 0 sind .

The foregoing analysis which wss described for a single mast
obstacle is applicable to any number of obstacles. It is only
necessary to specify the scattering dyad 'S for the obstacle cluster
and the vector K from the apntenna to a desigrated phase reference
center.

The PWS dyad S for tbe cbstacle or group of obitacles may be
specified from theory or experimant. The PWS dyad can be constructed
from GID, physical optics or the Mechod of Mowents solutions., The PWS
dyad for multiple obstacles must account fer multiple ecattering among
the obgtacles in order to achieve accurate resul:s for closeiy spaced
scatterers [39 ] . Howevey, accurate approximate equations are
available only for collections of parallel cyliuders cr spheres of
snall diameter. Generalized practical techniques for constructing the
FWS dyad tfor closely spaced obstacles of arbitrary shapes are not
available at the present time. Accordingly, this remains as one of the
most important problem areas in the analysis of site efftects for many
real-world aatenna installations.

The FWS technique 1s readily adapted for wideband antenna aualysis.




The extengion to wideband stochastic in-band and out-of-band situations
is presented and discussed in the following paragrapns.
2. Wideband Analysis

It will be advantageous to write the total electric field for

radian frequeacy w = 27 f as

E(u,r.0,0) = Jatletplojulr/el] (5171

s wl4%(0,0,0) + expl3uED)] 4%(u,0,0)]

where
E( w,ry6 ,4 ) = total field,
h { 8,49 ) = sin0 cos¢

K = sinb cos¢ x + 8in® sin¢ y + cos® :

¢ = the speed of light in free space

wvhere the superscrints a and & on A dendte the antenna and scatterer,
respectively. The scattered anteanna spectrum A% in Equation {(5-17) is
referred to a coordinate origin located in the geometrical center of
the scatter. The exponentisl factor exp {jw & - R/C)] "woves" the
scattered spectrum to location of the origin of che antenna rotationm
coordinates. The quantity {l/cr) will be suppressed in the remaining
equatisns, and thye total field will be writren as E( w,8 ,¢ ) in
recognition that the factor (i/cr) is being suppressed.

The antenna spectrum function A°(w,8,¢) for an overmoded
reflector antenna is comprised of the weighted sum of spectrums for alil
of the propagating wmodes r the antenna feed system. Hence, the

resultant antenna stectrum ’s
Ro,8,0)= 2 a (u)F (0,8,0) (5-18}

where

a (w) = the complex excitation ccefficient for the pth
H waveguide mode or frequency w, and
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Au (w 40 ,¢ ) = the antenna spectrum produced by the uth waveguide
mode.

It then follows that the scattered spectrum function A (w ,8 ,0 ) is
=8 -8
A(uw 0, ¢)= L a; (WA (w,8,9) (5-19)

where

-8y oo
£w,0,0) = -&? f / (S (w]n,¢30",0") K (w,0",0")
6 -0

cexpl-j f-[(sin(e)cos(¢))1x + [sin(8')sin(¢")]Y + [cos(6")]z

esin2(8')cos($')de’ do'} (5-20)

The deterministic power dens1ty P(w, 6, ¢) at observation angles

( 8, ¢) for frequency w 1is proportsonal to B (w,06,8) * ECuwy8 40 )

and is written explicitly in terms of the complex mode excitation

coefficients alw ) as

*
P(w,8,¢) = zu,zu au'(w) au(w) Pu.u(m.9,¢) (5-21)
where
Py 0:0) = mzhz(e,¢)[Aﬁf(w,e,¢)Az (0,8,0) + Aﬁf(w,e,¢)Aﬁ(m,e.¢)
+ exp [+jw ——-] A (m e, ¢)A (w,0,9)

~

+ exp (30 BR] A%00,0,008% (@,0,0)]  (5-22)
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The statistical average power density <P(w ,6 ,4 )>is obtained from
, Equetion (5-21) by statistically averaging over the product s;(u))au (w) )
of the complex wmode excitation coefficients. The waveguide aode
e S excitations generally are corcelated, and so the stochastic average value

<P(w, 8, ¢)> of the power density is written in the form

<Plw,2,3)>

*
Lo < X > < >
}J' u aul \“‘) aU(U) Puou(w!e:")

+

T ?
UGU(N)PUU(“”B’¢)

+ LT WP, (6,0,0) (5-23)

oi (w) = the variance of the pth mode coefficient,

€ (w) = the covariance function for the th pode coefficient
L and the conjugate of the ' th wmode, and

where the primes on the last double sum signify that only terms u # '
are included ir the sum.

Equations (3-21) and (5-23) are the appropriate equations for
obtaining average power pacterns over designated frequency intervals for
deterministic and randur <¢ituations, respectively, This process has
been described and numericalily simulated in Section II  for a phased
array antenna, Equations for time domain analysis are needed.
Accordingly, attention is focused on the time domain vedponse in the
following paragraphs.

The time domain electric field E(t, 8,6 ) coan be computed as the
discrete Fourier transform of the frequency domain response

E( w98y d } as

- 1 -
E(t,8,4) = e E E(wn,9.¢)ﬂ(wn)expljwnt] (5~24)




TR

where H(® ) is the pulse spectrum function and where the summation is
over a set of frequencies exceeding twice the bandwidth of the ianput pulse
spectrum. The E( “;,3 , %) in Equation (5-24) are the frequency domain
fields obteined when the input frequency spectrum is uniformly weighted
in amplitude. The time domain power density pP(t, 6, ¢) proportional to
E*(t, 6, ¢ YE(t, 8, ¢) and is written explicitly as

1 % - *
P(t,8,4) = 72 zp, zn{ E (wn.,e,¢)s(wn,e,¢)u (mn,)ﬁ(wn)

exvlj(wn-wn.)tl h (5~25)

This equatiom for P(t, 6, $) can be expressed directly in terms of the

mode propagation coefficients a( w) as

*.
P(t,0,¢) < 2 h (a,¢) z ): ,.5. {a‘}(wn,)au(wn)wn,wn
N H* . n .
(wn.)H(u\n)exp[J(wn.-wn) -c-l Pn.nu.u(wn..mnw.‘b) }

(5-26)
where

sa% a .
n “v u(mn"w )8 ¢) lAu|(‘i‘n|aer¢)§“(wnye:¢)

+Rs*(u 8 e)ﬁs(m 8,¢)
u' n" b u n. ]
ﬁ.' —_ak _
+ exp[jm _—C-R'} A:v(mnn -er¢)%3(mn.e_-¢)

-~

+ elP("JN K_;R-] A:(un!ei,);:t(mny Iai¢)]

(5-27)
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I, G

and where all other symbols have been previously defined., Equatiom (5-26)
is the appropriate equation for computing the power density envelope of
the radiated pulse at the far-field observation point ( 6,4 ) for a
specified input time pulse whose spectrum is H( wn). The pulse amplitude
envelope is, of course, the square root of P(t,® , ¢ ). The statistical
average value of the power density envelope of the time pulse is obtained
by statistically averaging over the mode coefficient products au ,(mn.)
* &, (w/ ). Making use of the fact that the wode coefficients for
different frequencies are uncorrelated, the statistical average value

< P(t, 9.4 )> of Plt,8 , ¢) is written as

1 2 - < *
<P(t,0,4)> = a2 h (6,9) Zn,XnLu.Lu{<au,(mn,)> <au(mn)>

(n'# a)

*
wn.wn k (Wn')n(mn)exp[j(Wnt_m“)r/cl' Pn; 'u(mn"mnle’¢)}

ny

*

o 2
+ ZnLu . Zu{wn}{ (.un)H(wn)

- P nu'u(mn"unl 8,0) C , {w,6,8) } (5-28)

The statistical average value of the envelope of the pulse amplitude
cannot be obtained by taking the square root of Equation (5-28) because
the average value of the square root of 2 random variable is not equal
to the square root of the average value. The statistical average value
of the amplitude of the pulse can be computed numerically with the aid
of the Nakagsmi p.d.f, if it is needed. Hewever, the statistical
average value of the envelope of the pulse power density given by
Equation (5-28) is the quantity of interest in this study.

C. Time Domain Simuiations

Numerical computctions were performed to compute the pulse
envelope pover density of non-random pulses -adiated by a waveguide
horn-fed reflector anteana for both in-band and out-of-band operation
in the presence of a nearby metallic cylinder. The computations were

made with aid of existing computer programs APATT and MBD previously
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developed at Ceorgia Tech[ 6 ,38]. APATT was used to generate the
clear-site in-bsnd and out-of-band antenna patterns as a function of
frequency. MBD was employed to compute the total electric field
(antenna + acatterer) versus frequency for the antenna/obstacle
situations. The radiated pulse power density was calculated via
Equation (5-21).

The anteana used for the simulations is a8 4~foot diameter
paraboloidal reflector antenna fed by a waveguide horn. The design in-
band center irequency is 3.0 GHz and the design in~band antenna
polarization is vertical., The wuveqguide portion of the feed system
consists of a 6-inch long sectiou of standard WR- S-band waveguide
excited by a coax-to-waveguide adapter. he antenna operates in the
presence of a 12-foot tall, 2-foot diametcr metal cylinder located
within the near-field of the antemna.

Plots of the radiated pulse power density enveleope are shown in
Figures 5-2 through 5~7 for a single input rectangular pulse of two
nanoseconds duration, Figures 5-2 and 5-3 show the radiated pulses for
in-band operation of the antenna while Figures !-4 through 5-7 show the
radiated pulses for out-sf-band osperation of the antenna. The plots
are sequeuced as follrws. TFiguras 5-2 and 53 show the radiated pulse
in the antenna boresight (0-degree) directiun f{or the clear site and
the blocked condition, respectively. Figures 5-4 and 5-5 show the ocut-
of-band radiated pulse in the boresight direction antenna boresight
for clear-site and blocked operation, respectively. Siamilarly, Figures
56 and 5-7 show the out-of-band radiated pulse in a sidelobe region
for the clear site and blocked situations, respectively. For the
blocked case, the metal cylinder was located six feet away from the
antenna alcng the 59 radial. The four out-of-band figures are
sequenced in the same manncr snd the obstacle was located at the same
position just des:-ibed for the in-band computations.

The in-band pulses were computed from the santenna or
autennafobstacle electric field for frequencies from 2.0 GR:z to 4.0 GHz
in 0.05 GHz steps. Similarly, the out-of-band pulses were computed

from the antenna or antemna/obstacle elecric fields for frequencies

from 5.5 CHz¢07.5 GHe in 0.05 GHz steps. Tha pulse carrier frequencies
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fecr the in-band and out-of-band pulses are 3.0 CHz and 6.5 CHz,
respectively.

The waveguide power flow for the in-band computations was esatirely
in the TEjg mode. The wavaguids power flow was randomly distributed
among the allowed modes for the out-of-band computations. In
particular, the mode coefficients at each incrementsl frequency were
obtained from a random draw via a pseudo-random number generstor. The
statistical average power for each allowed mode was chosen to be
(1.0/N) watt, where N i3 the total number of allowed modes ar a
particular frequency.

The iu-band pulses displayed in Figures 5-2 and 5-3 are noticeably
distorted. In particular, the radiated pulses for both the clear-site
and partially blocked situations are characterized by the appearance »f
time sidelobes and noticcable increase in the pulsewidth, as expected
from theory. The pulse for the partially blocked antenna suffers less
distortion than the pulse for the unobstructed anterna. This result ia
attributed to the fact that the variations in the mplitudes and phases
of frequency domair electric fields are less dramatic for the partially
blccked antenna than for the unobstructed antenna.

The out-of-band pulses displayed in Figures 5-4 throuvgh 5-7 are
severely distorted. The out-of-band pulses in the antenna boresight
direction are considerably wore distorted than their io-band
counterpatts. Of course, this result is expected because the electric
field varies wmore dramatically over the out-of-band frequency interval
than for the in-band frequency interval. The out-oi-band pulge in the
boresight direction for the unobstructed antenna does not resemble the
input 2.0 nanosecond rectangular pulse. However, the out-of-band pulse
in the boresight direction for the partially blocked autenna does
resemble a rectangular pulse and the distorcion is manifested prirarily
in the appearance of time sidelobes. The trend toward smaller pulse
distortion for the partially blocked antenna for the pulsis in che
boresight direction is also evident in FPigures 5-6 and 57 for the
pulses radiated in the sidelobe directions.

The observed trend toward less distortion for the partially

blocked anteuna than for the unobstructed antenns is attributed to the
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moderating effect of the scattering obstacle on the variations of the
amplitude aud phases of the e¢lectric field over the 2.0 GHz frequency
intervai. However, it should be noted that the 2.0 foo% rylinder is
large in terms of wavelength and, consequently, the scattered fields
are less frequency sensitive than the scattered fields for resonant
scatterers, Accordingly, it would be premature to generalize the
distortion results to other scaitering enviromments involving
structures that hsve dimensions (uwparable to the wavelengths in the
pulse spectrum, particularly those environments where dielectric
scatterers are present. Additional analytical, numerical, and
experimental research is needed in order to characterize the wideband

c¢w and pulsed effects of arbitrary scattering environments.
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SECTIOR VI
CONCLUDING REMARKS AND RECOMMENDATTORS

The research work described herein weets or exceeds the atated
objectives for this basic research program. The overall main objective
was to advance the state of xnowledge concerriny unear~field theory and
techniques for wideband radiating systems at in-band and out-of-bard
frequencies. This was achieved by the successful compietion of four
research tasks. The task objectives and the key results for each tisk
are described below. Thete results are followed by recommendations for

further research work in tne four task areas,

A. Sumnary of Results

Task 1. Provide a near~field methodology to characterize
electromagnetic emitter radiation pstteras at in-band and out-of-band
frecuencies for wide bandwidth radiators. The objective of this task
was to develop the appropriste theory and equations based on
statistical analysis techniques for efficient characterization of
wideband radiators.

The theory aad equations were developed for characterizing the
radiation patterns of widebaud cw or pulsed antennas over bath in-band
and out-of-band frequency intervale from measured dzta collected ~ia
near-field wmeasurament techniques. The results are applicablz to
either phased array or veflector antennas. Numerical simulations were
performed for (1) a 20-element out—of-band waveguide phased array with
no inter-element coupling. The effect of statistical correlations of
the near-field datz was astudied and methods for handling correlation
effects were derived. Useful approximations for the probability
density fuaction for the radiated power pattern statistics for
correlated sources were also identified.

The key resulis obtained via the Task 1 efforts way be summarized

as follows:

(1) Thz statistical average patterns ani standard deviations
at selected frequencies can providie a very succinct
engineering descripiion cf the imporiant EMC characteristice
of widebend CW multimoding antennas. The statistical
average patterns and standard deviations are a practical




alternative to the comparatively more expensive and
cumbersome Monte Carlo simulations.

(2) The statistical average pattern for a given frequency
way be computed from a knowledge of the following near-
field statistical parsweters:

(a) statistical average value of the electric field
at all near-field measurement points,

(b) the standard deviation of the electric field at
all measurement points, and

{c) the covariance functioas for the electric fields
at ali different necar~field measurement points.

(3) The statistical average pattern versus time for a pulsed
system depends on all of the above near-field stastistical
parameters lisied ia Item 2, and the following far-field
statistical parametars:

5 (a) the statistical average value of the far-field
b : electric field at all frequencies in the frequency
i band ,

(b) the standard deviation of the far-field electric
field at all frequeacies in the frequency band, and

. (c) the covariance functions of the electric field st
3 all different frequencies in the frequency band.

However, the far-field statistical parumeters listed above
can be computed from the near-field statistical parameters.
Thus, pulsed antennas characterization does not require
knowledge of any adiitional statistical near~field data.

(4) The probability deasity function (p.d.f.) for the far-field
electric fields of cor-elated random sources or scatterers
can be accurately approximated for most antenna or scattering
problems via the use of Nakagsmi's p.d.f{. and linear operator
theory. A leas accuvate but -clatively simple expression for
the p.d.f, was also Jderived that is suitable for certain
engineering applicstions.

Task 2. Theorecically relate the radiation pattern
characterization to the basic data needed for efficient optimization
analysis »f electromagnetic spectrum usage. The objective of this task
was to relate the near-field derived wideband artenna characterization .

to antenana coupling of antenna systess which co-exist in the samc EM

environment.




The efforts on this task weru devoted to deriving approximate but
accurate coupling prediction equation:. Three different techniques for
coupling analysis were considered. These three techniques are denoted
regpectively as (1) Plane Wave Spectrum (PWS), (2) Spherical Spectrum
Wave (SWS), and (3) the Geometrical Theory of Diffraction (GTD). Most
of the research efforts were devoted toward development of the PWS
technique. Multiple scattering effects are not addressed in the
analysis. However, multiple scattering effects can be approximately
analyzed if the scattering matrix of each antenna is specified from
theory or measurements. Theory and equations for tke PWS, SWS, and GTD
approaches were presented and discussed. Results of numerical
simulations using the PWS approach for analyzing antenna coupling are
also preseanted. The GTD technique for deterministic antenna analysis
was adapted to yield comparatively simple equationz for certain classes
of antenna coupling problems.

The analyses for this task were conducted in the frequency domain.
The primary goal was to obtain equations valid over wide frequency
bandwidths . The time domain response can then be obtained by
numerically computing the Fourier Transform of the frequency domain
equations, The wideband frequency response of swept CW radiating
systems ia then characterized by numerically computing the frequency-
averaged pattern and standard deviation,

Task 3. Provide the methodology to assess the effects of system
devices (i.e., higher-order mode generation) on the radiation pattern.
The two main objectives for this task were (1) to develop a method for
analyzing the antenna pattern effects of higher order modes generated
and/or propagated by common feed system devices and (2) to asseas the
feasibility of deducing the wode excitations for a radiating feed
syatem from analysis of measured out~of-band pattern data.

Equations were derived during Task 1 and Task 2 to permit the out-
of-band radiation pattern statistics to be computed from a knowledge of
the system device statistics which describe the higher-order wode
generatior and propagation, Theory and equations for identifying the
higher—order mode excitations of a feed containing passive and/or

active waveguide devices through utilization of wideband or pulsed

near-field measurements were also derived.




The timely completion of the required research work for this task

et

persitted a brief Aigression into another iwmportant aspect of the out-
of~tand response of system devices. In particular, saquations were
sought to desc-ibe the influence of particular waveguide devices on the
excitaticn and subsequent propagation of out-of-band waveguide modes,
Three waveguide devices wer2 considered in this exploratory study,
namely (1) coax-to-waveguide adapters, (2) radial bends, and (3) ferrite
phase shifters. DProgram constraints precluded a detailed quartitative
analysis of all three kinds of devices. Accordingly, the research
efforts were concentrated mainly on the theoretical and numerical
analysis of a coax-to—waveguide adapter.

Task &. Investigate the impact of site effects on the near-field
antenna analysis technology. The objective of this task was to extend
the existing monuchromatic spectrum sca2ttering matrix analysis to study
antenna siting effects on the wideband and out—-of-band performance of
radiating systems.

A theoretical study was perforwed to investigate techniques and
derive the equations for extending the existing wmonochromatic spectrum
scattering wmatrix theory to analyze site effects over wide frequency
bandwidths. In particular, freguency domain equations were derived via
3 the Plane Wave Spectrum Scattering (PWSS) techunigque. The pulse

envelope responsc 1s obtained from the Fourier Transform of the
frequency domain PWSS equations. Based wupon the results of the
theoretical study, a numerical simulation of the siie effects on the
wideband in-band and out-of-band performance of a pulsed radiating
system was performed for & reflector antenna partially blocked by a

round metal cylinder located in the aantenna's unesr-field.

y B. Recommendations

The results of the research work conducted for this basic research

program significantly advance the state of knowledge concerning near-

field wideband in-band and out-of-band radiation and/or scattering
phenomeua. However, fucrther advances can and should be made through
additional research work. Accardingly, recommedations for further .

research work are preseunted herewith:
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Task 1.

(a)

(b)

(d)

Task

(a)

(b)

Task

(a)

Conduct theoretical and numerical analyses to derive a
reliable, accurat~ practical method to compute the near-
field covariance functions from the near~field data
obtained from a single probe.

Conduct theoretical and numerical analyses to derive the
probability density function for correlated sources or
scatterers.

Conduct theoretical and numerical analyses to derive the
inter-element coupling and covariance functions for a
multimoding array of out-of-band waveguide elements.

Conduct near-field measurements for a multimoding waveguide
array to provide validation data for item (c).

2.

Conduct theoreticsl and numerical analyses to derive anteanna
coupling model(s) that are valid for arbitrary orientations
and locations of in-band as out-of-band wideband cw or pulsed
teflector antennas in the presense of environmental
gscattering obstacles.

Conduct near-fizld antennz ccupling measurements in the
presence of selected scatiering obstacles in order to
provide validation data for item (a).

3.

Conduct theoretical and numerical analyses to device improved
approximate methods for computing the higher-order mode
excitations and propagation constants for common waveguide
components such as radial bends, ferrite phase shifters,
coax-to-waveguide adapters, and waveguide rotary joints.

Conduct near-field measurements for multimoding feed systems
to generate validation data for item (a) and to provide
insighkt into realistic mode excitations encountered in
real-world feed systems.

40

Task

(a)

Conduct theorctical and numerical analyses to derive
simplified expressions for making rapid but accurate
approximate analyses of the wideband cw or pulsed response
of reflectors or phased array antennas that are partially
obstructed by one or more near-field obstacles.
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(b)

Conduct experiments to measure the wideband cw or
pulsed response of partially blocked snteunas to
provide validation data for item (a),
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